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1 Grobner Basis

Denote by < the coordinate wise partial order on INj. (ay,...,a,) < (by,...,b,) if a; < b; for

i €[n].

Divisibility is a partial order on monomials.
Theorem 1.1 (Dicksen’s lemma). Every infinite subset of INj contains elements a,b with

a<b.

Proof. The proof follows by induction. Let M C INj be an infinite subset. For any i € IN,
define M,
M ={a=(ay,..,a,) e N} ' : (a,i) € M}

If M is finite, then look at [ J; € Ny, which has finitely many and atleast one minimal element.
Thus there is some j € N such that [ J_, M; with a € M; for some i < j.Hence (a,i) < (b, k).

]

Corollary 1.2. For any ¢ # M C INj the set of minimal elemnents wrt < is nonempty and
finite.

1.3. Monomial order on INj is a relation < such that
1. fa#bthen<borb<a.
2. fA<bandb<cthena<c.
3. (0,...,0) < afor any a € INj.
4. a<bthena+c < b+ cforanyceNj.
First two conditions together imply that < is a total order.

Remark 1.4. 1. If a < b, then a < b, i.e., any monomial order refines coordinate wise
partial order.

2. Any monomial order on IN} gives total order on monomials in k[ X;]
Example 1.5. Lexicographic order: Left most non zero entry of a — b is positive the a >, b.
degree lex order if either |a| > |b| or |a| = |b| and right most entry of a — b is negative.
degree reverse lex order, same as above but right most entry of a — b is negative.

Proposition 1.6. For any monomial order < on INj with ¢ # M C INj has a unique minmial
element.

Proof. Dicksen’s lemma gives that M has a finite nom empty set of minmal elements wrt
coordinate wise order. The minmal elet of thse wrt < is the desired elemnt. []

1.7. Fix a monomial order < on k[X,,]

1. The initial monomial im(F) of f = ) ¢,x? is the largest monomial wrt < appearing in
f with non zero coefficients.

2. The leading term lt_(f) := ¢,x* with x* = im(f)



3. The initial ideal of an ideal I is im(I) = (im(f) : f € I).

If G is a generating set for an ideal I then (im(g) : g € G) C im(I) and this inclusion can be
strict.

Proposition 1.8. Let < be a monomial order on k[ X, ]. Every ideal I has a finite subest § such
that im(I) = (im(g) : g € 9).
Any such §G is called a Grobner Basis of I wrt <.

Proof. The set of monomials in im(I) has a finite and nonempty subset of minmal elements
wrt divisibility, say m;,...,m;. Thus im(I) = (my,...,m;). Every monomial in im(I) is the
initial monomial of some f € I. hence there exists f; ..., f; € I with im(f;) = m;. Thus {f}is a
Grobner basis. ]

Theorem 1.9. If G is a Grobner basis of I, then I = (G)
Note that Hilbert’s basis theorem is a simple corollary of this.

Proof. We argue by contradiction. By 1.6, choose f € I — (9) such that im(f) is minimal.

Call im(f) = x*. x* € im(I) = (im(g) : g € G). There exists g € G such that im(g)|x’, say

x? = x¢ - im(g).

im(f = x°Ag) < x® = im(f) where A = It(f)/x°1t(g) € k. But f — x°Ag € I —(G), which is a
contradiction to the minimality. [

Lemma 1.10. Consider f, g, ..., & € k[X,], with g; # 0. Then for any minmal order <, there
exists q; ..., qs, r € k[ X,] such that

L f+) ,q8+r
2. im(f) > im(q;g;)Vi (note that im( f) = im(q;g;) for some i)
3. im(r) is not divisible by im(g;) for any i.

We say f reduces to r by {gi, ..., g}

1.11 Division Algorithm. Input: f, g; ... g
Output: g, ... g5, r satisfying the properties 1-3.

1. Setr=0,p=gf,q1=-=¢ =0
2. While p # 0 do:

If im(g;) divides im(p) for some i € [s], then set g; = ¢; + % and p; = p — %gi
else setr = r +1t(p), p = p — It(p)
3. Return g, ..., qs, 7

Example 1.12. Consider Lexicographic ordering with x > y and f = x%*y + xy* + y* and



g=xy—-1,m=y"—-1

p xy—1 y =1 r
xzy + xy2 + yz—xzy + X
xy*+y +x—xy 4y

Y+ x+y-x x
yE+y—y'+1 1

y+1l-=y y
1 1

Corollary 1.13. Buchberger’s criteria Let G be a finite subset of I. Then G is a Grobner basis
of I iff each f € I can be reduced to 0 by G.

Proof. If f reduces to r by G, then im(g;) does not divide im(r), for all i. Howevert f —r € (9)
and r € I and G is a Grobner basis of I. So there exists some g € G such that im(r) is divisible
by im(g), which forces r = 0.

Conversely, we have f = ), ¢;g; with g; € § and im(g;g;) < im(f). Hence equality for some i
and so im(f) € (im(g) : g € 9). O
Proposition 1.14. Let < be a monomial order. Then

1. Let B be the set of monomials in k[X,] — im(I). Then B C k[X,]/I is a k vsp basis.

2. If G is a Grobner basis of I, then the remainder of f by G is unique and does not depnd
on the choice of G.

Proof. 1. If p = Y. Aim; € I with m; € B, then im(p) € im(I), but im(p) = im(m;) ¢ I. To
show B spans.m € k[X,] such that m ¢span(B).

Take min{m} = m where m ¢ B. So we have m € im(I). There exists f € I such
that im(f) = m. So any monomial in f —1t(f) + I = f — Am + [ is in span (B). So
Am+1I = p — f +1 espan(B). This leads to a contradiction

]

Definition 1.15. 1. For terms Ax%, ux® (A, u € k) denote by
ged (/lx“, ,uxb) = ged (x“, xb)
Iem (Ax“, ,uxb) =lcm (x“, xb)

2. For 0 # g, h € k[x,], their s -polynomial (wrt monomial order <)

- lt(h) _ lt(g)
R T ORI ORI

1.16. Buchberger’s Algorithm for computing Grobner basis Input: fi, ..., f; € k[X,] in mono-
mial order.
Output: Grébner basis G of I = (fi, ..., f;) wrt <.

3



1. Setn={(fi,fs)

2. Order the elements of G as fi, ..., f;

3. For 1 <i < j<tdo: Reduce S(g;, g;) tor by g. If r # 0, then set § := G U {r} and go to
step 2.

4. Return G
Remark 1.17. The algorithm computes a Grobner basis. It terminate vecause in case r #
O' lm(r) e <lm (gl) 5" lm (gt)>
1.18. Extension to submodules of finitely generated k[ X,,] module So F = k[ X,,|" = @ k[ X, ]e;.
i=1

Monomials in G are of the form x%; and terms are Ax%; with A € k.
A monomial order on F is a total order on the monomials satisfying:
If x* = 1, thenm; < my, = m; < x%,; < x*m,, for monomials m; in F.

Given a monomial order on the polynomial ring k[X,]| and an order on {¢;}. We obtain a
monomial ordering on F by ordering IN§ x [r] or [r] x INj lexicographically.

Dicksen’s lemma can be extended to monomials in F. We also define im, It with respect to <
analogously. There is also a division algorithm.

Theorem 1.19. 1. Every submodule M of F has finite Grobner basis and the basis gener-
ates M.

2. If B is the set of monomials in F — im(M), then B C F/M form a k basis of F/M.



2 Hilbert Functions
Definition 2.1. Let I C k[X,,] be a monomial ideal . The Hilbert function of A = k[X,]/I (or
of I) is
hy :INy > Z
a— hA(_]) = dlmk[A]]

where [A]; is k vector space of images of polynomials of degree j, from k[X,] — A.(So
ha(j)=number of monomials in [k[X,]]; — I).

It’s generating function is the Hilbert series

Hy(z) = Z ha(j)2’

20

Example 2.2. 1. For I = 0, we get hyx,1(j) = ("+§_1) and so

Hix(2) = ), (n Zi] 1>Zj " _lz)n

Jj>0

2. If I = (x%), then let e = deg(x?).

3.
) hix,1() j<e
hix,1(G) = el . .
hiix () — huxa (G —€)  j>e
Hence 1 .
—z
Hipx,11 = (1-z)

Theorem 2.3. For any proper monomial ideal I of k[ X, ], the Hilbert series of A = k[X,]/I is

a rational function of the form
ka(2)

(1-z)
with k4(z) € Z[z],x4(0) = 1,x4(1) # 0,d € IN.( this expression is unique.)

Hy(z) =

The dimension of A is
dimA :=d

and the multiplicity of A (or degree of I) is

deg(l) = H4(1) >0
There is a polynomial called Hilbert polynomial p4 of A such that h4(j) = pa(j) if j >> 0.
Ifd = dim A > 0, then

deg(I
pa(z) :(def(li' z%7! + lower order terms

() e (T ()

d-1 d-2

where ho(A) = deg(I) and h;(A) are integers. Note if p(z) # 0 polynomial, then deg ps =
d—1=dimA-1.



Example 2.4.

I =0, we get dim k[ X, | = n and the multiplicity of k[X,,] is 1 = deg .

I = (x*) with deg x = e, then dimk[X,]/I = n — 1 and deg(I) = deg(x?).

Proof of 2.3. Inclusion exclusion principle: | [ _, X; |= Z (=)™ | X, | where X, = Nier Xi
$=Tcs]

Let I = (my,...,ms) = I, where m; are monomials. Denote by X;(j) set of degree j monomials
in (m;) C k[X,]. hence for T C [s], X7(j) = [y Xi(j) is the set of deg j monomials that are
divisible by mr = lem(m;);cr. Define e, : = degmyr. So

0 j<e
Xr(j)| = .
%) {(n_ﬂ_q) e
Thus
. —-1+j- , -1+k 1
> %O =Y, (” J e) - (” )k a1
20 J>er n—1 i\ n—1 (1-2)
Since
—1+4]
ha(j) = (n B J) — number of deg j monomials in I = (m, ..., my)
n—1+4+j
= < o )— x|
i€l j]
We get

H2) = Y ()2 = Y (” e ) F Y)Y G

Jj20 Jj=0 Te[s] j>0

_ 1 N _. g(z)
‘(1—z)n+kz[;]( V= G-z

When g(z) € Z[z], with g(0) = 1 writing g(z) = (1 — 2)’k4(z) with k4(z) € Z[z], suitable

v € N and k4(1) # 0,x4(0) = 1. Hence Hu(z) = (’if(:))d where d = n —v. Write

w
ka(z) = Z ezt withe, € Z
k=0

D ha()e = (gckzk)(z (d; o l)zl)

j=0 1>0

comparing coefficients in deg j >> 0, we get



ha(j) = Z Ck<d;_11+l) = ch (d_;t{_k)

polynomial in j — k
variables of degd — 1

(Z ck) ( di 1) + lower order terms

k=0
[—
k(1)

=: pa(j) (Hilbert polynomial)

If ha(j) = 0 whenever j >> 0, then by definition 0 = d = dim A and in this case p4 is the zero
polynomial. Hence if d > 0, then hs(j) > 0 if j >> 0 and so the leading coefficient of p4(z)
must be positive, i.e., k4(1) > 0 O

Definition 2.5. A monomial order is called degree compatible if
deg(x®) > deg(x?) = x> x*
for any two monomials.
2.6. For any ideal I C k[X,] and any t € Z, set
Io={f€l:degf <t}
It is a k-subspace of k[ X, |. Write Mon(k[ X, ]) for the set of monomials in k[ X,].

Lemma 2.7. Let < be a degree compatible monomial order. For any ideal I C k[X,] = S, one
has

. k[Xn]gt . . k[Xn]gt
dimy = number of monomials in -
Lt im (1)

=| Mon(k[X,])< — im<(?) |

Proof. B := Mon(k[X,])<, — im_(I). We claim

BcC KXl is a k- basis

<t

Mon(k[X,]) —im(I) is a k-basis of k[ X,,] — im(I), by 1.14. B spans remainder of any F € k[X,]
pon dividing by Grébner basis of I wrt < satisfies degr < deg f. [
For I C k[X,], the affine Hilbert funtion of A = k[X,]/I is

hilq :INO —_—> Z
k[ X, ]<;

<Jj

j = k() = dimy

Lemma 2.8. For any degree compatible monoial order < on I, one has
Bt () = Ho() = ha( = 1)

where A = k[ X,]/I.



Proof. By definition, we have
sy (1) =| Mon(k[ X, ), — im() |

2.7 = h%(j) =[ Mon(k[X,])<; — im(I) | O

J
Remark 2.9. If A # 0, h%(0) = 1. Then by 2.8 we have h4(j) = Z hiix,1/im@ (k). It follows
k=0
that generating function of h and h «x,) have analogous properties

im< (1)

2.10. We define dimensin of A,

k[Xa] k[X.]

dim : = dimy im(0)

and the degree
deg(D) = deg(im(1))

where < is a degree compatible monomial order.

2.11. Let G = (G, +) be an abelian group. A G-graded ring R is a family of subgroups ([R] ) <
(R, +) such that

1. R = ®,[R], (as Z-modules)
2. [Rla-[R]s C [Rlass
The elements of [R], are called homogeneous of degree a.

Example 2.12. Fine or Z-grading of k[ X, ], where G = Z"

(5], = 0 if some ag; < 0
Tl s Aek}

Definition 2.13. R = G—graded ring

1. G-graded R-module is an R-module M with a decomposition ([M],).c such that
M = eaaEG[M]a and [R]a : [M]b - [M]a+b-

2. A G-graded or simply graded submoudle of such a graded M is a graded submodule
N C M such that
[Nla C [M],

Lemma 2.14. For an arbitrary submodule N of a G graded R-module M the following are
equivalent

1. N is a graded submodule

2. N has a generating set consisting of homogeneous elemnents

3. Ifm =), m, withm, € [M],, thenm € N iff each m, € N.

4. M/N is a G-graded R-module with grading [M/N], := [M]%N

Proof. ]



Example 2.15. 1. M and N are G-graded, then so is M & N with grading [M & N|, :=
[M], ® [N], (as R modules). So if R is G graded, then so is R".

2. I C k[X,] is a Z" graded submodule if I is a monomial ideal.

3. A Z-graded or homogeneous ideal of k[ X, ], is an ideal that has generating set consisting
of homogeneous polyonomials. In that case k[ X,]/I is a graded module.

2.16. A homomorphism of G-graded modules or a G-graded homomorphism is a R-module
homomorphism ¢ : M — N that is degree preserving, ¢([M],) C [N],.

For any a € G and a G-graded module M, the module M(a) has the same module structure as
M, but grading given by
[M(@)]y == [Mlass

M(a) is a degree a shift of M. (Note here that the convention is opposite of that in algebraic
topology.)
Example 2.17. 1. Consider k[ X, ] with standard grading.
¢ : k[X,] —=k[X,]
foxif

is not a graded homomorphism. However define

Y o k[Xa](=2) =k[X,]
fxif
then f € k[X,](—2) has degree deg f + 2. So f € [k[X,](=2)]deg f+2-

2. For any a # in G, R(a) is not a graded ring, (because identity is not in 0 dimension), but
it is a graded R-module.

Lemma 2.18. If ¢ : M — N is a homomorphism of graded modules, then ker ¢, im¢, coker¢
are graded modules.

Proof. [ker ¢], = ker ¢ ([M],, and [im¢], = im¢ ([N
O

Example 2.19. 1. If M is a Z graded module with generators my, ..., m; where d; = deg m;,
then

¢+ (D R(=d) —M

r t
S
i=1

Ty

is a homomorphism of graded R-modules and is surjective.



2. Consider I = (x*,xy, y*) C k[x,y] + S with standard grading.
¢ :S(-3)S(-2)dS(—4) > 1

ker¢ : <

There exists an exact sequence,

fi
[?] = fix’ + fy + fiy!

5

graded hom

> —— 5(-4) & S(=5)

0
¥
—x

y
_xz
0

5(-3)
S(—4) ® s
0> & —>S5(-2)——— > S—>S5/1->0
s |y o] o [ xy ¥
=x* y’| S(—4)
0 —x

Definition 2.20. For any Z graded module M over k[X,] its Hilbert function is
h,:7Z—->7Z
J P hn()) = dim[M];
assuming [M]; is finitely generated for all j.
Remark 2.21. For any monomial ideal I C k[X,],2.1 and 2.20 agree.
dimy[k[ X, ]1/11; =[ [Mon(k[X,])]; — I |

Proposition 2.22. For every graded submodule M of a finitely generated free k[ X, ] module
F and any monomial order < of F,

he(7)
im(M)

hem(j) = vVjeZ

Corollary 2.23. For any finitely generated k[ X, ] submodule m = 0, Hilbert series is of the
form

Hy(z) := Z hu(j)7’
_ ku(2)Z
S (1-z)
where ky(z) € Z|z], k,(0) # 0,x,(1) > 0, € Z.

There is a Hllbert polynomial py(z) € Q(z) such that
hy(j) = pu(j) j>>0

(krull) dimension of M is defined as
dimM =d

and the degree is
deg(M) = k(1)

10



Proof. Let M be generated by my, ..., m; of degree d, ..., d; respectively. Define

} EB5:15(_0&) M
foxif

is not a graded homomorphism. However define

l// : k[Xn](_z) _)k[Xn]

h
vdots| — Zﬁm,-
fi

Set N = ker ¢ and we have a short exct sequence 0 - N — F — M — 0 and by rank nullity
theorem we have hy(j) = hr(j)—hn(j). S and F have desired Hilbert series which are rational
functions. So it is enough to show the same for N, which is same as hr/im(n)-

im(N) is generated by monomials. So

F _ ~ /S
im(N):@ (Z) (=d)

has the
desired
properties

for monomial ideals J,. O

t
Example 2.24. 1. S = k[X,],F — €P) S(~d)). Then

i=1

d
Zi

Hg_4)(2) = -2y

2. Consider I = (x*,xy,y*) C k[x,y] + S with standard grading. A = S/I. We have the
exact sequence,

5(=3)
S(—4) @
0> & —>S(—2)+>S—>A:S/I—>O
(-5 @ [ xy ¥
S(—4)

Hu(z) =Hs(z) — Hy(—3)es(-2)@s(-)(2) + Hs—aos(-5)(2)
=Hs(z) — Hy(-3)(2) — Hs(2)(2) + Hs(_4(2) + Hy(_s5)(z) — Hy(—4)(2)
1-2-2+2
S (1-zp

=1+3z+22°+2°

So dim A = 0 and deg M = 6 (polyonomial evaluated at 1).

11



Lemma 2.25. Letd € N. Every a € N admits a unique presentation of the form

() ()

with integers k; > k;_; -+ > k. It is called the d-Macaulay presentation of a.

Example 2.26. For d = 3 and a = 12, we have

2= (3)+()+ ()

Definition 2.27. If a > 0 with d-Macaulay presentation

_ kd kd—l ks
= (3) () ()
k k k
(d) _ d+1 d s+1
= (i) (6) =+ ()

Theorem 2.29 (Macaulay). Let h : Ny — Z, the following are equivalent,

set

Example 2.28. 12 = 17

1. There is some n € IN; and some homogeneous ideal I C k[ X, ] such that Hilbert function
of A =k[X,]/I is h.

2. There is a monomial ideal (Lexicographic ideal) I C k[X,]| with n = h(1) such that
Hilbert function of A is h.

3. h(0) =1and
h(j+1) <h(HPif j>0

Moreover for every graded k-algebra A, one has

ha(G+ 1) = ha(DV if j >> 0

Example 2.30.
jlo 1 2 3 4 5 6
h|1 4 10 12 18 18
h|1 4 10 12 17 17

h is not a possible Hilbert function because 12’ = 17. While h is a possible Hilbert function.

12



3 Ideals and Schemes

3.1 Affine case

Definition 3.1. A ring R is reduced if " = 0 for some n € IN implies r = 0.

Lemma 3.2. Considere a reduced ring R and an ideal I of R. Then R/I is reduced iff I = +/I.
Hilbert’s Nullstellensatz gives bijection if k = k. Let S = k[xy, ..., x,].

V4

Subvarieties of | I {Radical Ideals of } | Reduced factor
Al - S - rings of S
J=S/]
ker(S > A) <« A

Definition 3.3. The geometric object X associated to an ideal J C S is called an affine (sub)
scheme of A}. Iy := ] is called the defining ideal of X and S/J is called co-ordinate ring.
X = spec(S/]) to denote the scheme X. The reduced subscheme of X is X,.q = spec(S//J).
It is also called the support of X.

Remark 3.4. 1. Definition 3.3 is a special case of an affine scheme. Spec(S/]J) is the set
of prime ideals of S/J endowed with Zariski topology where closed sets are of the form
V(p) where p is a prime in S containing J.

2. If k = k, then the points of X = Spec(k[X,]/+J) C A} are the points of X,.q = Z(J) =
Z(\JJ). ( The scheme X captures more information, for example multiplicities of the
common zeroes)

Example 3.5. For any j € N the scheme Y; C A" defined by (x,, ..., x,)’ is supported at the
point (0, ...,0) i.e. (Y;)rea = {(0, ..., 0)}. Sometimes Y is called a fat point.

Definition 3.6. The dimension of Y = Spec(k[X,]/]) is dimY = dimk[X,]/] (as defined
using Hilbert series 2.3)

Example 3.7. dim Spec %l =0 v;

(xlv--sxn)j
Definition 3.8. Let X,Y C A" be subschemes of A™. Then X is called a subscheme of Y, if
Iy C Ix. In symbols X C Y.

The intersection X N Y is the scheme defined by Iy + Iy and the union X U Y is defined by
Ixnk.

Example 3.9. Continuing with the notation used in 3.5, we have Y; C Y, C -, butY, ¢
k[ X, ]
(2, .00, %)

. J

Spec( ) ("fat point sticks out of line"
P p

line

Theorem 3.10 (Primary decomposition theorem).

Example 3.11. An affine scheme Y C A" is irreducible if for any subschemes Y;,Y, C Y with
YuY,=YeitherY =Y, 0rY =Y, or Yoy = (Y1)red = (Y2)rea

13



Lemma 3.12. 1. Y isirreducible iff Iy is primary.
2. Y is irreducible and reduced iff Iy is a primary ideal.
3.13. 1. The fat points Y; in 3.5 are irreducible but not reduced if j > 2

2. AlineY is defined by Iy = (I3, ...,1,_,), where [; are linear independent polynomials in
k[X,]. Any line is reduced and irreducible.

Corollary 3.14. Every affine scheme is a finite union of irreducible schemes

3.2 Projective Schemes
3.15 Notation. m = (x, ..., x,) C k[xo,...,x,] C S.
J € S is a homogeneous ideal or equivalently ] C m
If k = k we have bijections

Vcpr , [ homogeneous Reduced graded

{ projgctive } = { Radical Ideals } par { guotient }

variety JCm rings of S
Definition 3.16. Let p be a prime ideal. A p-primary ideal q is a primary ideal q with \/q = p
Lemma 3.17. A homogeneous ideal ] C m is m— primary iff \/J = m.
Definition 3.18. The saturation of a homogeneous ideal J is the ideal

7= Jusmog
n>1
] is saturated if J = J*.
Lemma 3.19. Let ] C m be homogeneous. TFAE
1. J is saturated

2. m is not an associated prime ideal of S/J.

3. There is some homogeneous f € S of positive degree such that f € S/J is a non-zero
divisor equivalent to (J : f) = J.

Remark 3.20. 1. If ] = ¢, N g, N - N g, is a minimal primary decomposition of J with
homogeneous g; and say g, is m—primary , then

= g1 NN Qs

2. If \JJ € mthen J* is the largest homogeneous ideal I C S such that [J]; = [I]; for any
k >> 0. ([J] — k is the space of polynomials of degree k.)
Example 3.21. Consider J = (x%, x?y) = (x?) n (x®,y). J& = (x?). In k[x, y,z], J*' = ]

| S——
(x.y)

14



Definition 3.22. For every homogeneous ideal J with JJ C m, we consider S/J*" as a
geometric object X called a projective (sub)scheme of P". The homogeneous ideal of X is
Ix = J® and S/J* is called the homogeneous coordinate ring of X. Sometimes we write
X =Proj(S/J) = Proj(S/J*) for the projective scheme defined by J.

Remark 3.23. 1. One has the following bijections

[ graded quotient )
Projective homogeneous ring
1:1 saturated ideals | 1:1 k of S with a
12} U { subscl;}g:nmes } < {m; U J o =S/m } U non-zero
0 with [JCm divisor of
| positive degree |

2. For projective subschemes X,Y C P” the concepts of reducible, irreducible, X C Y, X n
Y, X UY are analogous to affine case.

Ixoy = (Ix + k)™
Ixyy = (Ix N Iy)
Example 3.24. X,Y C P? be schemes with homogeneous ideals
I = (x0, x1) N {2, x3) « pair of skew lines

Iy = (x; + x3) « hyperplane

X nY should consist of two points.

Ix + Iy = (xq, X1, X2) N X1, X2, X3) N {Xg, X3, X1 + Xz, X1 X7)

(%0--.,X3)—primary

IXﬂY :(IX+IY)sat:<x0:x19x2>n<xlsx25x3> andXﬂY:XﬂYred:{(O :0:0: 1)3(1 :0:0:

0)}.
dimX =1,dimY =2
deg X =2,degY =1

Definition 3.25. For a projective subscheme X C P", we define it’s dimension as
dim(X) = dim(S/Ix) — 1

and degree as

deg X = deg Iy = deg(S/Ix)

15



4 Bezout’s theorem

Definition 4.1. Consider any R- module M. An element r € R is called M-regular if rm = 0
foranym e M = m = 0); Otherwise r is called a zero-divisor of M.

Note. f € Ris M-regularif0 :py f =0 : 3, (f) =0
Example 4.2. The zero divisors of Z— mod Z/6Z are precisely the integers (2) U (3)

Proposition 4.3. If M is finitely generated graded S-module and f € Sis M regular of positive
degree, then

1. dimM/fM =dimM — 1
2. degM/fM = deg f degM

Proof. Since f is M regular, there exists a short exact sequence (d = deg f)

0—>M(—d)|i>M—>f£M—>0
me fm
So hyypn(j) = hy(j) — hu(j — d) u

Lemma 4.4 (Mayer-Vietoris sequence). If Nj, N, ar graded submodules of a graded submodule
M, then there is a SEQ of graded modules

M M
- s — P — > —— >
NlﬂNZ Nl N2 N1+N2
m +—(m, m)

0 0

(my, my) = m; —my

Corollary 4.5. If I, ] C S are homogeneous ideals, then h S = h§(k) +h S (k) for all k € Z.

Corollary 4.6. 1. dim(%) = max{dim S/I,dim S/J}
2. If WLOG dim S/I > dim S/J, then
degS/1 dimS/I > dimS/]
deg( S ) degS/I +degS/] dimS/I =dimS/J >dimS/I+ ]
eg(—) =

Inj degS/I +degS/] dimS/I =dimS/I + ]
—degS/T+]

16



5 Free Resolutions

5.1 Notation. S = k[x,, ..., x,] where degx; = 1,m = (x, ... x,) = ®50[S];

A=S/I,m=my = EB[S/I]J'

>0
M finitely generated Z graded A-module. ¢ : M — N hom of graded modules (degree
preserving).

Lemma 5.2 (Nakayama’s lemma). 1. If % =0,thenM =0

2. If the images of homogeneous my,...,m; € M generate M 4s an A module, then they

mM
generated M as an A module.
Proof. 1. See Eisenbud Cor 4.8
2. Set N = (mIM—mt)’ then % = m = 0. This gives N = 0, = M = (my, ..., my).

]

Corollary 5.3. For homogeneous elements my, ..., m; € M TFAE:
1. M={(my,...,m)
2. The images my, ..., m; in M/mM genearted M /mM as a module over A/m = k.

Definition 5.4. A minimal generating set G consists of homogeneous lements such that G
{g} is not a generating set Vg € G...

Corollary 5.5. If {my,...,m;},{ny, ..., ns} are minimal generating sets of M, then s = t and
deg m; = degn;, for i € [t] upto reindexing.

Definition 5.6. Let ¢ : F — M be any surjective hom of fg graded A modules, where F is
free.

1. The fg A module ker ¢ is called a (first) syzygy module of M (over A). It’s elements are
called (first) syzygies (correspond to relations among generators of M).

2. The map ¢ is said to be minimal if the induced hom

- F =~ M
g — - —
mF  mM
=)
is an isomorphism of k-vector spaces where k = A/m.

Remark 5.7. Let {ey, ..., e;} be a basis of F. Then ¢ is minimal iff {¢(e,), ..., #(e;)} is a min gen
set of M.

Example 5.8. S = k[x].

0->8-1)5S ﬂk — 0 ¢ is minimal

17



x 0
S o 1)
0> @® ——>S >k—0 1 isnotminimal
S

In factkeryy = ker¢p @ S.

Lemma 5.9. The first syzygy module of M is unique upto isomorphism and free direct sums.

Proof. Consider surjective map ¢ : F — M where F = @!_, Ae;.

1. Suppose ¢ is not minimal. WLOG {@(e,), ..., ¢(e,)} is a min gen set of M (r < t). Write
F —G@® P where G = ®_,Ae; and P = ®/_,, Ae;. Then the restriciont y = ¢l : G > M

is minimal.
0
0 —— kery G M > 0
|
e |
0—>ke;¢ F P M > 0
P
0

The commutative diagram induces (snake lemma) a short exact sequence
0 —>kery »>ker¢ - P —0
P free = ker¢ = P @ ker ¢y ~ syzygy from minimal map.

2. Assume ¢ is minimal and ¥ : G — M is another minimal homomorphism. To show
ker ¢ = kery. By 5.5 there is an isomorphism € : G — F such that

0 —— kery > G > M > 0
]
0 —— ker¢ » F > M > 0

this commutative diagram gives us ker ¢ = ker .

]

Definition 5.10 (Minimal Free resolution). 1. Ahom ¢ : F — G of free A - modules is
called minimal if im(¢@) < m,G.

2. A (graded) free resolution of M ( over A) is an exact sequence of fg graded A modules

F. ---—>Ftﬂ>Ft_1—>-~-—>Flﬁ»F0—>M—>0

where each F is free and ¢; is graded.
It is called minimal free resolution if each ¢; with i > 1 is minimal.

18



B
Remark 5.11. 1. ¢ : F YL G is minimal iff any coordinate matrix of ¢ does not have any
units of A as entries.

2. The first sequence in 5.8 is a MFR, but second sequence is a free resolution but not
minimal.

Theorem 5.12. 1. Any fg graded A module has a MFR (graded ) F.

2. If G is any free resolution of M, then there is a complex P. of free A modules and an
isomorphism of complexes G. = F. @ P.. In particular any two MFR of M are isomorphic.

Proof. 1. Existence and uniqueness follows from iterating 5.7 and 5.9.
¢
s By Fp ooy > Fo > M > 0
ker ¢, ker ¢
0 0

2. Suppose G is not minimal, we will show that we can "cancel" at least a (shifted) copy
of A in two consecutive free modules. Indeed by assumption there is some i > 1, such
that ¢ is not minimal. Fix a coordinate matrix B = (b;;) of ¢y. It contains a unit, say
b, € k™.

Performing elementary row and column operations (changing base of G, Gx_;) we get
another coordinate matrix.

32
Il

]
S
s .
=

o

Denote by B/, the matrix obtained from B by deleting row i, and column j,.
Then ¢ decomposes as

s G Giy
o= @ : & - &
Yy A(=d) A(—d)

and
¢ G _>Gk 1

is given by multiplication by B’ and
bigjo
¥ i A(=d) — A(-d)

Since ker ¢, = ker ¢; and im¢@, = im¢; ® A(—d) the sequence obtained from G, by
cancelling the complex

biojo
0> A(—d) — A(-d) - 0

19



is also a free resolution of M.
[
Definition 5.13. Let --- - F; - F, > M — 0 be a MFR of M. By the previous theorem, there
are unique integers f3;; € N, such that F; = &;A(—j)
The numbers ﬁ{;‘.(M ) are called the graded Betti numbers of M (over A).
Example 5.14. Consider I = (x% xy,y’) C S = k[x, y]. Then S/I has a MFR

y 0
S(—3) 0 —x S(—Z)Z (x2 xy y3)
0o-»- & —F & —>55->55/I-0
S(—4) S(=3)

Definition 5.15. 1. F = @] Ae; . Define the j" exterior power to be the free A-module A/F
whose basis elements are of the form

e,»l/\eiz/\---/\e,-j Wlthlgel<lz<<ljgr

Thus rank(AF) = ( )

J
2. g =gi,...., 8 € Abe sequence of homogeneous elements. Set F = @] Ae; with dege; =
deg g;. Then the Koszul complex to g. is the complex

g A
K.(g) : 0> NF = N'F o o> NE 25 AIF S 5 AF 5 AF = A — (grr &) =f=0
gls-“sgr

with
$; : NF > N7'F

J
€, AN €, VANEREIVAN e,»j g Z(_l)k+1gikei1 VAN i, VANERRWAN éik VANRREIAN el'j
k=1
It is a graded complex: ¢; 1¢; = 0 and deg(e;, Ae;, A~ Ne;) = Y dege;,
Example 5.16. The complex to x%,y over S = k[x, y] is

-y
s 1] OB ey s
<eNe > (x2,9) ~
L S(-1) Y
It is exact.
"repeating elements break exactness"
-1
1] S L
0->5(-3)— & —S->0
5(=2)
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cancel S
O—>S(—2)x—>S—>—2—>O

x
which is the Koszul comlex of x?.
Proposition 5.17. The Koszhul complex to g. = gi,..., & € Ais exactiff gy, ..., g is a regular
sequence.
Proof. Refer Eisenbud.

O

Theorem 5.18 (Hilbert’s Syzygy theorem). Every finitely generated graded S = k[x, ..., x,]-
module M has a finte minmal finite resolution:

O>FK—>F,—>>FK>M-0
witht <n+1dim§S.

Proof. There is a homological argument using Koszul complex on xy, ..., x, and another con-
structive proof using Grobner basis. [

Example 5.19. A = k)

X

x x A
> A-2) > A(-1) > —=k—>0
x

is a MFR of k over A. It is infinite.

Remark 5.20. Describing which sets of graded Betti numbers occur among (classes of ) fg
graded S-modules is an active area of research.

Theorem 5.21. The greaded Betti number of fg graded S module determine its Hilbert series

b(e) = 2D

<« rational

Proof. Let0 - F, —» - > F;, > F, > M — 0 be a MFR of M. Then
t .
Hy(z) = Y (1Y Hg(2)
i=0
zJ

(1 _ Z)n+1
Since F; = @;S(—j)Pu, the claim follows. O

Hy—j(z) =

Definition 5.22. The depth of a graded A-module M is the maximal length of a M-regular
seqeunce consisting of homogeneous elements of A of positive degree, denoted by depth ,(M).

Remark 5.23. 1. For any homogeneous ideal S, I C m;

depth(S/I) > 1 < I is saturated
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2. For any graded M, depth(M) < dim(M). (dim = 0 = depth = 0.)
Definition 5.24. A finitely generated A-module is it Cohen-Macaulay if depth(M) = dim(M).
Example 5.25. 1. Sis CM as an S-module.

2. Any 0-dimensinoal module is CM.

3. For I =(x°,x*y) = (x*) n(x’,y) C k[x,y] dimS/I = 1 and depth S/I = 0. (I** = (x?)).
So /I is not CM.

4, If X c P", dim X = 0. S/Ix is CM S-module.
5. dimS/I = 1 > depth S/I, > 1(since I, is saturated.)

Proposition 5.26. A K algebra A = 5/I is CM (as an A-module) iff there is graded polynomial
subalgebra N with dim N = dim A and A is a fg generated graded free N-module. (Nother
Normalization )(Free module over polynomial subalgebra)

Proof. Refer Eisenbud. [

Theorem 5.27 (Auslander-Buchsbaum). Suppose a finitely generated graded A-module M
has a MFR
0O->F—>F,—>>FK->M->0

It’s length t is called the it projective dimension of M. So projdim(M) :=t

If A=S, then
projdim(M) = n+ 1 —depth(M) > n + 1 — dim(M)
——
dim(S)

Proposition 5.28. For any fg graded A-module M
projdimM >n+1—dim M
with equality iff M is CM.

Proof. projdimM = n + 1 — depth M
dimM > depth M []

Definition 5.29. A = S/I is said to be Gorenstein algebra if it is CM and if the last free module
in a MFR of A has rank one, i.e.,

0->S(-d)»F;—>—>F—>S>A->0

witht = n+ 1 — depth A.

Example 5.30. 1. The Koszul complex shows that any complete intersection is Goren-
stein.
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2. If A is a triangualtion of sphere then it’s Stanley-Reisner ring is Gorenstein.

0
1

2
For example 3 the above figure has Stanley-reisner ring A = S/I where

I = (xo%y, XoX3, X1X3, X1 X4, X2X4). The MFR of A has the for
0 S(=5)—>S(-3° > S(-2° >S—>A—>0

X3 X4 0 0 0

—Xy —Z1 0
—Xo X4 X2
—Xo —X3 —Xi

5.31. Notation char(K) = 0 and S = k[xo, ..., X,], R = k[0, .., Yl
Definition 5.32.

B :SxR—>R
(f,G) — 9 - G( differentiation)

induced by 9,.G = a";go a";gn and extend k-linearly

Lemma 5.33. 1. fisa perfect pairing, i.e. it is k bilinear and f(f,G) =0VG € R — f =
0and f(f,G)=0,vfeS = G=0.

2. Forani, j € Z f induces maps

In particular for any j € Z,

is also a perfect pairing.

Proof. Bilinearity is clear. Now for any monomials x* € S,3" € R of deg j then 9,.Y® # 0 iff
a=b. O
The map f turns R into an S module: f - g := 9,G.

Definition 5.34. 1. For any homogeneous ideal I C S define Macaulay’s inverse system
I* as
I :={GeRlo;G=0vfel}

a graded S-submodule of R.
2. For any graded S-submodule M of R define it’s annihilator as
Ann(M) := {f € S|lo;G =0 forany G € M}

Note: [S];[R]; € [R]i; ( not exactly what we mean by graded module. Can think of it
as [S]-; but thats messy. So we bare with this little inconvenience.)

M C R a graded S-submodule (in the above sense). Define Ann(M) in the same way.
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Example 5.35. 1. G = y2y?, Ann(G) = (xJ, x})
2. I =(x§,x?). Thn I has a k-basis y,y?, Yoy1, Y7, Y1, Y1, 1.

Note:dimA/I = dimS/+I = dimk = 0. To think about dim0 in terms of Hilbert
dimension is dimS/I = 0 <= [S/I]; = 0 when j >> 0 iff dim(S/I) < o0. Hy/(2) =
2. s0dimp; S/IN; = p/(1— 2)%.

3. J = (x0,x1) C k[x,x1,x;]. J* has a k-basis {yé D jE€ ]NO}. It is not a fg S module
dimS/I = 1.

Theorem 5.36. There are bijections
{homogeneous ideals of S} <> { Graded S submodules of R}

I—1TI"
Ann(M) < M

I*is a fg graded S -module < dimS/I = 0.

Proof. The definition implies I C Ann(I*) and M C Ann(M)*. The equality follows by com-
paring dimensions. O

Proposition 5.37. For any homogeneous ideal I C S one has
for any j € Z.

Proof. Note that [I']; = {G €[R]; : 9;,G=0,Vf€ [I]j}. Because if f € [I];_;, then 9;G = 0
iff 9,0/G = 9,yG = 0 for any [ € [S];.So it is enough to test G against polynomials of deg j in I.

Since [S]; x [R]; — k is also a perfect pairing, it follows that dim[I]; = dim[S]; — dim[I]; =
dimy[S/I];. O]
5.38. Properties of ythe bijection in 5.36
1. For any two graded S-submodules M, N of R one has Ann(M + N) = Ann(M) n Ann(N)
2. For any homogeneous ideals I,] C S, (I n )" =1+ J*"
Definition 5.39. Anideal I ¢ Sisreducibleif I =anbwithI Ca,I Cb.
Remark 5.40. 1. I = (x?, y?) is irreducible (I = Ann(xy)).

2. Every irreducible ideal is primary but not true conversely.

(oxyyt)y = (yy nxy’)

is not irreducible but primary.

Corollary 5.41. If I C S homogeneous with dim S/I = 0 the I is irreducible iff I* is principal.
I = Ann(G) for some G € R.
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Proof. Use the properties of the bijection and I = Ann(I*) O

Theorem 5.42. Let I C S be a homogeneous ideal such that ~ S/I = 0. TFAE
1. S/I is gorenstein.
2. I is irreducible.
3. I = Ann(G) for some G € R.
4. I'* is principal.
Proof. Since f is perfect pairing it follows that
hom(S/I, k) = I"(up to adjustment of grading)
It foolows for the MFR of S/I

0—>Fy—>F—>S>S5/1->0

F,.1 has rank 1 iff I'* is principal. [J rank F,. is
number of

Proposition 5.43. If S/I is gorenstein of dim 0 then it’s Hilbert function is symmetric (or min gen-

palindromic) in teh sense, 3¢ € IN such that erators of I

dimy[S/I]; = dimy[S/T].-;
for any j.

Proof. By the previous theorem I = Ann(G) for soem G € R. Let e = deg G.
Cpmsoder the map induced by

[
[S1; > Rle-

fHafOG
We get

dimi[I*],-; = dimy {9,GIf € [S], }
= dim;[S]; — dimg[ker ¢];

e —
I

= dim,[S/1],

BY 5.37 dimk[Il]e_j = dlmk[S/I]E_]

Example 5.44. [ = (x%,y* z%) C S = k[x, y,z]. S/I is gorenstein.
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Lemma 5.45. If X C P" is a finite set of pints and hy(j) = k, then there is a subset Y C X of
k points with hy(j) = k = hx())

Corollary 5.46. Let X C P} be a fintie set of pioonts where k is infinite.

1. There is some e € IN, such that
hx(0) < - < hx(e — 1) < hx(e) = hx(j) = [X|

foran j >e.
2. If X is gorenstein, then Hx(e — 1) = |X| — 1.
Proof. Since depth(S/Ix) > 0 (Ideal of scheme saturated = depth > 0). So A = S/Ix contains

a nonzero divisor of positive degree. As K is infinite there exists a nonzerodivisor of degree
1, say [

05 A(-1) 5 A— AJIA >0

a— al

is exact and so
haja(j) = ha(j) —ha(j — 1)

and
dimA/IA=dimA—-1=0

Hy i4(2) is a polynomial. Denote it by e it’s degree. Now first statement follows. By 5.43 we
know

1= hasa(0) = hyja(e)

which implies the second statement. [

Example 5.47. If A/IA has Hilbert function

then A has Hilbert function 1,4, 9, 12,13, 13
Theorem 5.48 (Davis, Geramita, Orrechia, 1985). For a fintie set of points X C ", TFAE
1. X is Gorenstein

2. There is some ¢ € |X|—hy(e — j) = hx(j) for 0 < j < e/2 and for any subset Y C X with
Y| =|X|—1onehashy(e—1) = |X| -1
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6 Waring Rank

S = k[xo, ..., x,] char(K) = 0. For any d € N, the k vector space of [S]; has a k basis of ("*d)

d
of powers of linear forms I , [; € [S],, i € [(";d)]

Hence for any f € [S]; can be written as

)
f=> Al Lek
i=1

If K is algebraically closed using A; = u¢ one gets

D)
f= Z(uizod

Definition 6.1. Given f € [S]; any expression of the form

=Y
i=1

where [; € [S]; is called a Waring decomposition of f.

The least r such that f has a Waring decomposition with r summands is called the waring

rank denoted wr(f) := wri(f)
Example 6.2. xy = ;[(x + )’ — (x — y)*] so wrg(xy) = 2.
Determining the waring rank of a general polynomial is the problem of interest.

Proposition 6.3. If K is algebraically closed then for any g € [S], one has

((q) = rank(Q)
Xo
where Q € KM j5 symmetric with g = [xp - x,]Q |

Xn

Proof. Since Q is symmetric 3T invertible € K"+ gych that

a 0
T'QT =
0 a,
ly
Hence x'(T'QT)x = Y, aix?. q = [l L]0 | i | = q(lo, ..., 1)
L
Changing basis I; = y; , x; is a linear formil- in yp, ..., yn we get q(o, > Yu) = 2, aoiiz O
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Theorem 6.4. For any sufficiently general f € [s]; with d > 3, one has

( n+d)
war(f) = [~/

n+1

exceptifd =3andn=4ord=4and2<n<4

Remark 6.5. This is a consequence of a result about Hilbert function Set I := n’_, I when

P, .., P, € P" are general points. Then h,(j) = min {(n + Dr, ( " :_ Y ) } for any j except

+2
j:3,n:4andn:9.orj:4,2§ng4andr:(n4 )—l

Recall for R = k [yy, ..., x,| we have perfect pairing

SxR— R

(f,.G) = 097-G

IcS—I"CR
Ann(M) <« M

Every linear form I = ayyy + -+ . + a,y, € R corresponds to a pointand P = (aq : ... : a,) € P".
Lemma 6.6. For any f € [S]; [ = sY0+ ---a,y, and d € N one has
d!
op -1 = .
T d- )

Proof. 1t suffices to check this for f = x* = xi - xi" € [S]; if d > |b| where I := 0 if

n

d<j. 0

f(ag, ..., an) 147

Lemma 6.7 (Apolarity Lemma ). Let X € P" be a set of s distinct points corresponding to
linear forms [, ..., ;. Cot f € [R]; Then there are ¢, ...¢; € K st.

f=> ¢l iff I, ¢ Ann(f)
i=1

Proof. = To simplify notation, for P = (a, : ... : a,) write f(p) instead of f (ay,...,a,). By
definition g € Ann(f) iff 0 =9, - f =0

g € Ix satisfies g(P;) = 0 for i € [s] This shows Iy C Ann(f).
— L CAm(f)e D> Amn(f)=eIk>3f
For any point p = (a, - a,) € P", one has
IPL = {cljf; ic€k je ]NO} with [, = coxo + -+ anX,
(Itis ETS for p=(1 : 0+ : 0). Then I, = (xy,...,x,) Thus f € [, < g—i =0 < f=cx]
forcek jelN,)
I = I,n..0LJF = I+ 415 So [IF] = {1y +-+(I¢) Hence f =¥, clf with, ek [
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Theorem 6.8 (Catkin, Catalisamo, Geramita,2012). If k is algebraically closed, 1 < ay < a; <

.. < a,, then
H (@i + 1)

Wr( ap al.‘.y,,
yO yl n o + 1)
G

Proof. If n = 0, then wr(ay’) = 1

Let n > 1. Since Ann(G) = < gotl xfitt ...,x,‘f"“> and a; < a; < ...a,, we get
Ann(G)D> ] = <x“1+1 XL gt — ‘”1> (1)

J is generated by a regular sequence, so dimS/J = 1 and degJ = (a; + 1)...(a, + 1) = r. Let
n; € k be aprimitive a;+1 root of unity and consider X := {(1 LR )10 <k < aiVi}.
Then [X| = (a; +1)...(an + 1) =rand X Cc Z(J). Hence X = Z(J), Iy = ] = wr(G) <rby
Apolarity lemma.

Conversely by apolarity there is a saturated ideal I C Ann(G) defining a set ' C P" of s points.
SoI = Nper(l, : %) = NperI, where I" C T is the subset of points not lying in the hyperplane
defined by X, = Z(x).

Set s’ = [I"| < [I] = s. So it suffices to show 5" > r._ >
calculated explicitly) and thus xo ¢ I So s’ > g, ie,I # S,sol : x, = I. Hence for every
Jj>>0, we get

> r. Since ay > 1, we hgve x, € Ann(G)(1
J

S =hs()= Y h s ()
k=0 "

Moreover I € Ann(G) implies

I=1:x CAnnG) : x
_<xa0, a1+1’“.’ an+1>

SO
I+ XS = <x0, “1“, ,xr‘f"“> = j ~ regular system of parameters

Note, dimS/J =0 and deg ] = (a; +1)...(a, + 1) = r
It follows that

J J
=D hs ()2 kz hy (k)
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7 Complexity of Matrix multiplication

Question. How many multiplications in K does one need to compute A - B for A, B € K™"

Example 7.1 (Stransen, 1989). n = 1. Let C = (¢;;). Set

I = (a1 + az)(bi; + b2p) V = (an + azx) (by)
II = (as + az)by VI = (—ay; + az) (b2 + b12)
II1 = al (b21 + bzz) VII = (a12 - a22) (b21 + bZZ)

IV = az (=by; + by)

cu=1+1V-V+VII
coy =11 +1V
cp =11+V
Cop =1—I11+1I1+VI

Remark 7.2. This is optimal. (Uimogradov, 1971)

Definition 7.3. The exponenet of matrix multiplication

w = inf {r € R : computing the product of two n x n matrices takes O(n") multiplications}

Theorem 7.4 (Strassen, 1969). w <log,7 = 2.81
Current record: w < 2.374 (Gall, 2014)
7.5. Conjecture w = 2.

IfU,V,W are k-vector spaces with bases {u;}, {v j} ,{wi}, then the tensor product u ® v @ w
is a k vector space with basis {ui ®v; ® w } .

The rank of atensorT e U®V ® W is

rk(T) ::min{r : T = Zr:(ui®vj®wk)z}

I=1
for any u;,v;, wr € U,V, W respectively. hom(U ®
. : VW) =
Under this isomorphism the map UoVeW f
UV > W fin dim space

A®B— A-B

M, = 3.\ ix=1 Eij ® Ejx ® Ey; where E;; € K™ has a 1 in position (i, j) and all other entries 0.
Theorem 7.6 (Strassen, 1983). w = inf {r € R : rank(M,) = O(n")}

The symmetrization of M, gives a symmetric tensor corresponding to the polynomial

f, = trace(X’)
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where X = ( x;; );; € [n]
——

variable
dimv=n
V1 ®Uy ~»01 ®U, +0 DU+ - +U,-1 DUy,
1X1X2

n
= Z X;jXjkXr; homo. of deg 3

i,jk=1

Theorem 7.7 (Chiantini, Ikenmeyer, Landsberg, Ottarini, 2018). @ = inf {r € R : wr(f,) = O(n")}
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