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1 Gröbner Basis

Denote by ≤ the coordinate wise partial order on ℕ
𝑛

0
. (𝑎1,… , 𝑎𝑛) ≤ (𝑏1,… , 𝑏𝑛) if 𝑎𝑖 ≤ 𝑏𝑖 for

𝑖 ∈ [𝑛].
Divisibility is a partial order on monomials.

Theorem 1.1 (Dicksen’s lemma). Every infinite subset of ℕ𝑛

0
contains elements 𝑎, 𝑏 with

𝑎 < 𝑏.

Proof. The proof follows by induction. Let M ⊂ ℕ
𝑛

0
be an infinite subset. For any 𝑖 ∈ ℕ0

define M,
M𝑖 = {𝑎 = (𝑎1,… , 𝑎𝑛) ∈ ℕ

𝑛−1

0
∶ (𝑎, 𝑖) ∈ M}

IfM𝑖 is finite, then look at⋃
𝑖
∈ ℕ0, which has finitely many and atleast one minimal element.

Thus there is some 𝑗 ∈ ℕ such that ⋃𝑗

𝑖=0
M𝑖 with 𝑎 ∈ M𝑖 for some 𝑖 ≤ 𝑗 .Hence (𝑎, 𝑖) < (𝑏, 𝑘).

Corollary 1.2. For any 𝜙 ≠ M ⊂ ℕ
𝑛

0
the set of minimal elemnents wrt < is nonempty and

finite.

1.3. Monomial order onℕ
𝑛

0
is a relation ≺ such that

1. If 𝑎 ≠ 𝑏 then ≺ 𝑏 or 𝑏 ≺ 𝑎.

2. If 𝐴 ≺ 𝑏 and 𝑏 ≺ 𝑐 then 𝑎 ≺ 𝑐.

3. (0,… , 0) ≺ 𝑎 for any 𝑎 ∈ ℕ
𝑛

0
.

4. 𝑎 ≺ 𝑏 then 𝑎 + 𝑐 ≺ 𝑏 + 𝑐 for any 𝑐 ∈ ℕ
𝑛

0
.

First two conditions together imply that ≺ is a total order.

Remark 1.4. 1. If 𝑎 < 𝑏, then 𝑎 ≺ 𝑏, i.e., any monomial order refines coordinate wise
partial order.

2. Any monomial order onℕ
𝑛

0
gives total order on monomials in 𝑘[𝑋𝑛]

Example 1.5. Lexicographic order: Left most non zero entry of 𝑎 − 𝑏 is positive the 𝑎 >𝑙𝑒𝑥 𝑏.

degree lex order if either |𝑎| > |𝑏| or |𝑎| = |𝑏| and right most entry of 𝑎 − 𝑏 is negative.

degree reverse lex order, same as above but right most entry of 𝑎 − 𝑏 is negative.

Proposition 1.6. For any monomial order < on ℕ
𝑛

0
with 𝜙 ≠ M ⊂ ℕ

𝑛

0
has a unique minmial

element.

Proof. Dicksen’s lemma gives that M has a finite nom empty set of minmal elements wrt
coordinate wise order. The minmal elet of thse wrt < is the desired elemnt.

1.7. Fix a monomial order < on 𝑘[𝑋𝑛]

1. The initial monomial im<(𝐹) of 𝑓 = ∑ 𝑐𝑎𝑥
𝑎 is the largest monomial wrt < appearing in

𝑓 with non zero coefficients.

2. The leading term lt<(𝑓 ) ∶= 𝑐𝑎𝑥
𝑎 with 𝑥𝑎 = im(𝑓 )
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3. The initial ideal of an ideal 𝐼 is im(𝐼 ) = ⟨im(𝑓 ) ∶ 𝑓 ∈ 𝐼 ⟩.

If 𝐺 is a generating set for an ideal 𝐼 then ⟨im(𝑔) ∶ 𝑔 ∈ 𝐺⟩ ⊂ im(𝐼 ) and this inclusion can be
strict.

Proposition 1.8. Let < be a monomial order on 𝑘[𝑋𝑛]. Every ideal 𝐼 has a finite subest G such
that im(𝐼 ) = ⟨im(𝑔) ∶ 𝑔 ∈ G⟩.
Any such G is called a Gröbner Basis of 𝐼 wrt <.

Proof. The set of monomials in im(𝐼 ) has a finite and nonempty subset of minmal elements
wrt divisibility, say 𝑚1,… , 𝑚𝑠. Thus im(𝐼 ) = ⟨𝑚1,… , 𝑚𝑠⟩. Every monomial in im(𝐼 ) is the
initial monomial of some 𝑓 ∈ 𝐼 . hence there exists 𝑓1 … , 𝑓𝑠 ∈ 𝐼 with im(𝑓𝑖) = 𝑚𝑖. Thus {𝑓𝑖} is a
Gröbner basis.

Theorem 1.9. If G is a Gröbner basis of 𝐼 , then 𝐼 = ⟨G⟩

Note that Hilbert’s basis theorem is a simple corollary of this.

Proof. We argue by contradiction. By 1.6, choose 𝑓 ∈ 𝐼 − ⟨G⟩ such that im(𝑓 ) is minimal.
Call im(𝑓 ) = 𝑥

𝑏. 𝑥𝑏 ∈ im(𝐼 ) = ⟨im(𝑔) ∶ 𝑔 ∈ G⟩. There exists 𝑔 ∈ G such that im(𝑔)|𝑥
𝑏, say

𝑥
𝑏
= 𝑥

𝑐
⋅ im(𝑔).

im(𝑓 = 𝑥
𝑐
𝜆𝑔) < 𝑥

𝑏
= im(𝑓 ) where 𝜆 = lt(𝑓 )/𝑥

𝑐
lt(𝑔) ∈ 𝑘. But 𝑓 − 𝑥

𝑐
𝜆𝑔 ∈ 𝐼 − ⟨G⟩, which is a

contradiction to the minimality.

Lemma 1.10. Consider 𝑓 , 𝑔1,… , 𝑔𝑠 ∈ 𝑘[𝑋𝑛], with 𝑔𝑖 ≠ 0. Then for any minmal order <, there
exists 𝑞1 … , 𝑞𝑠, 𝑟 ∈ 𝑘[𝑋𝑛] such that

1. 𝑓 +∑
𝑠

𝑖=1
𝑞𝑖𝑔𝑖 + 𝑟

2. im(𝑓 ) ≥ im(𝑞𝑖𝑔𝑖)∀𝑖 (note that im(𝑓 ) = im(𝑞𝑖𝑔𝑖) for some 𝑖)

3. im(𝑟) is not divisible by im(𝑔𝑖) for any 𝑖.

We say 𝑓 reduces to 𝑟 by {𝑔1,… , 𝑔𝑠}.

1.11 Division Algorithm. Input: 𝑓 , 𝑔1 … 𝑔𝑠

Output: 𝑞1,… 𝑞𝑠, 𝑟 satisfying the properties 1-3.

1. Set 𝑟 = 0, 𝑝 = 𝑔𝑓 , 𝑞1 = ⋯ = 𝑞𝑠 = 0

2. While 𝑝 ≠ 0 do :

If im(𝑔𝑖) divides im(𝑝) for some 𝑖 ∈ [𝑠], then set 𝑞𝑖 = 𝑞𝑖 +
𝑙𝑡(𝑝)

𝑙𝑡(𝑔𝑖)
and 𝑝𝑖 = 𝑝 −

𝑙𝑡(𝑝)

𝑙𝑡(𝑔𝑖)
𝑔𝑖

else set 𝑟 = 𝑟 + lt(𝑝), 𝑝 = 𝑝 − lt(𝑝)

3. Return 𝑞1,… , 𝑞𝑠, 𝑟

Example 1.12. Consider Lexicographic ordering with 𝑥 > 𝑦 and 𝑓 = 𝑥
2
𝑦 + 𝑥𝑦

2
+ 𝑦

2 and
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𝑔1 = 𝑥𝑦 − 1, 𝑔2 = 𝑦
2
− 1.

𝑝 𝑥𝑦 − 1 𝑦
2
− 1 𝑟

𝑥
2
𝑦 + 𝑥𝑦

2
+ 𝑦

2
−𝑥

2
𝑦 + 𝑥 𝑥

𝑥𝑦
2
+ 𝑦

2
+ 𝑥−𝑥𝑦

2
+ 𝑦 𝑦

𝑦
2
+ 𝑥 + 𝑦−𝑥 𝑥

𝑦
2
+ 𝑦−𝑦

2
+ 1 1

𝑦 + 1 − 𝑦 𝑦

1 1

Corollary 1.13. Buchberger’s criteria Let G be a finite subset of 𝐼 . Then G is a Gröbner basis
of 𝐼 iff each 𝑓 ∈ 𝐼 can be reduced to 0 by G.

Proof. If 𝑓 reduces to 𝑟 by G, then im(𝑔𝑖) does not divide im(𝑟), for all 𝑖. Howevert 𝑓 − 𝑟 ∈ ⟨G⟩

and 𝑟 ∈ 𝐼 and G is a Gröbner basis of 𝐼 . So there exists some 𝑔 ∈ G such that im(𝑟) is divisible
by im(𝑔), which forces 𝑟 = 0.

Conversely, we have 𝑓 = ∑ 𝑞𝑖𝑔𝑖 with 𝑔𝑖 ∈ G and im(𝑞𝑖𝑔𝑖) ≤ im(𝑓 ). Hence equality for some 𝑖
and so im(𝑓 ) ∈ ⟨im(𝑔) ∶ 𝑔 ∈ G⟩.

Proposition 1.14. Let < be a monomial order. Then

1. Let 𝐵 be the set of monomials in 𝑘[𝑋𝑛] − im(𝐼 ). Then �̄� ⊂ 𝑘[𝑋𝑛]/𝐼 is a k vsp basis.

2. If G is a Gröbner basis of 𝐼 , then the remainder of 𝑓 by G is unique and does not depnd
on the choice of G.

Proof. 1. If 𝑝 = ∑ 𝜆𝑖𝑚𝑖 ∈ 𝐼 with 𝑚𝑖 ∈ 𝐵, then im(𝑝) ∈ im(𝐼 ), but im(𝑝) = im(𝑚𝑖) ∉ 𝐼 . To
show �̄� spans.𝑚 ∈ 𝑘[𝑋𝑛] such that �̄� ∉span(�̄�).

Take min{𝑚} = 𝑚 where 𝑚 ∉ 𝐵. So we have 𝑚 ∈ im(𝐼 ). There exists 𝑓 ∈ 𝐼 such
that im(𝑓 ) = 𝑚. So any monomial in 𝑓 − lt(𝑓 ) + 𝐼 = 𝑓 − 𝜆𝑚 + 𝐼 is in span (�̄�). So
𝜆𝑚 + 𝐼 = 𝑝 − 𝑓 + 𝐼 ∈span(�̄�). This leads to a contradiction

Definition 1.15. 1. For terms 𝜆𝑥𝑎, 𝜇𝑥𝑏 (𝜆, 𝜇 ∈ 𝑘) denote by

gcd (𝜆𝑥
𝑎
, 𝜇𝑥

𝑏

) = gcd (𝑥
𝑎
, 𝑥

𝑏

)

lcm (𝜆𝑥
𝑎
, 𝜇𝑥

𝑏

) = lcm (𝑥
𝑎
, 𝑥

𝑏

)

2. For 0 ≠ 𝑔 , h ∈ 𝑘 [𝑥𝑛], their 𝑠 -polynomial (wrt monomial order < )

𝑆(𝑔, ℎ) ∶=

lt(ℎ)

gcd(lt(ℎ), lt(𝑔))

𝑔 =

lt(𝑔)

gcd(lt(ℎ), lt(𝑔))

ℎ.

1.16. Buchberger’s Algorithm for computing Gröbner basis Input: 𝑓1,… , 𝑓𝑠 ∈ 𝑘 [𝑋𝑛] in mono-
mial order.
Output: Gröbner basis G of 𝐼 = ⟨𝑓1,… , 𝑓𝑠⟩ wrt <.
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1. Set 𝜂 = ⟨𝑓1⋯ , 𝑓𝑠⟩

2. Order the elements of G as 𝑓1,… , 𝑓𝑡

3. For 1 ≤ 𝑖 < 𝑗 ≤ 𝑡 do: Reduce 𝑆(𝑔𝑖, 𝑔𝑗) to 𝑟 by 𝑔 . If 𝑟 ≠ 0, then set G ∶= G ∪ {𝑟} and go to
step 2 .

4. Return G

Remark 1.17. The algorithm computes a Gröbner basis. It terminate vecause in case 𝑟 ≠

0. im(𝑟) ∉ ⟨im (𝑔1) ,⋯ , im (𝑔𝑡)⟩.

1.18. Extension to submodules of finitely generated 𝑘[𝑋𝑛]module So 𝐹 = 𝑘[𝑋𝑛]
𝑟
=

𝑟

⨁

𝑖=1

𝑘[𝑋𝑛]𝑒𝑖.

Monomials in 𝐺 are of the form 𝑥
𝑎
𝑒𝑖 and terms are 𝜆𝑥𝑎𝑒𝑖 with 𝜆 ∈ 𝑘.

A monomial order on 𝐹 is a total order on the monomials satisfying:
If 𝑥𝑎 ≠ 1, then 𝑚1 < 𝑚2 ⟹ 𝑚1 < 𝑥

𝑎
,1 < 𝑥

𝑎
𝑚2, for monomials 𝑚𝑖 in 𝐹 .

Given a monomial order on the polynomial ring 𝑘[𝑋𝑛] and an order on {𝑒𝑖}. We obtain a
monomial ordering on 𝐹 by orderingℕ𝑛

0
× [𝑟] or [𝑟] ×ℕ𝑟

0
lexicographically.

Dicksen’s lemma can be extended to monomials in 𝐹 . We also define im, lt with respect to <
analogously. There is also a division algorithm.

Theorem 1.19. 1. Every submodule 𝑀 of 𝐹 has finite Gröbner basis and the basis gener-
ates 𝑀 .

2. If 𝐵 is the set of monomials in 𝐹 − im(𝑀), then �̄� ⊂ 𝐹/𝑀 form a 𝑘 basis of 𝐹/𝑀 .
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2 Hilbert Functions

Definition 2.1. Let 𝐼 ⊂ 𝑘[𝑋𝑛] be a monomial ideal . The Hilbert function of 𝐴 = 𝑘[𝑋𝑛]/𝐼 (or
of 𝐼 ) is

ℎ𝐴 ∶ℕ0 → ℤ

𝑎 ↦ ℎ𝐴(𝑗) = dim𝑘[𝐴]𝑗

where [𝐴]𝑗 is 𝑘 vector space of images of polynomials of degree 𝑗 , from 𝑘[𝑋𝑛] → 𝐴.(So
ℎ𝐴(𝑗)=number of monomials in [𝑘[𝑋𝑛]]𝑗 − 𝐼 ).

It’s generating function is the Hilbert series

𝐻𝐴(𝑧) = ∑

𝑗≥0

ℎ𝐴(𝑗)𝑧
𝑗

Example 2.2. 1. For 𝐼 = 0, we get ℎ𝑘[𝑋𝑛](𝑗) = (
𝑛+𝑗−1

𝑗
) and so

𝐻𝑘[𝑋𝑛]
(𝑧) = ∑

𝑗≥0

(

𝑛 + 𝑗 − 1

𝑛 − 1 )
𝑧
𝑗
=

1

(1 − 𝑧)
𝑛

2. If 𝐼 = ⟨𝑥
𝑎
⟩, then let 𝑒 = deg(𝑥

𝑎
).

3.

ℎ𝑘[𝑋𝑛]/𝐼
(𝑗) =

{

ℎ𝑘[𝑋𝑛]
(𝑗) 𝑗 < 𝑒

ℎ𝑘[𝑋𝑛]
(𝑗) − ℎ𝑘[𝑋𝑛]

(𝑗 − 𝑒) 𝑗 ≥ 𝑒

Hence
𝐻𝑘[𝑋𝑛]/𝐼

=

1 − 𝑧
𝑒

(1 − 𝑧)
𝑛

Theorem 2.3. For any proper monomial ideal 𝐼 of 𝑘[𝑋𝑛], the Hilbert series of 𝐴 = 𝑘[𝑋𝑛]/𝐼 is
a rational function of the form

𝐻𝐴(𝑧) =

𝜅𝐴(𝑧)

(1 − 𝑧)
𝑑

with 𝜅𝐴(𝑧) ∈ ℤ[𝑧], 𝜅𝐴(0) = 1, 𝜅𝐴(1) ≠ 0, 𝑑 ∈ ℕ.( this expression is unique.)

The dimension of 𝐴 is
dim𝐴 ∶= 𝑑

and the multiplicity of 𝐴 (or degree of 𝐼 ) is

deg(𝐼 ) = H𝐴(1) > 0

There is a polynomial called Hilbert polynomial 𝑝𝐴 of 𝐴 such that ℎ𝐴(𝑗) = 𝑝𝐴(𝑗) if 𝑗 >> 0.
If 𝑑 = dim𝐴 > 0, then

𝑝𝐴(𝑧) =

deg(𝐼 )

(𝑑 − 1)!

𝑧
𝑑−1

+ lower order terms

=ℎ0(𝐴)
(

𝑧 + 𝑑 − 1

𝑑 − 1 )
+ ℎ1(𝐴)

(

𝑧 + 𝑑 − 2

𝑑 − 2 )
+⋯ + ℎ𝑑−1(𝐴)

(

𝑧

0)

where ℎ0(𝐴) = deg(𝐼 ) and ℎ𝑖(𝐴) are integers. Note if 𝑝𝐴(𝑧) ≠ 0 polynomial, then deg 𝑝𝐴 =

𝑑 − 1 = dim𝐴 − 1.
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Example 2.4.

𝐼 = 0, we get dim 𝑘[𝑋𝑛] = 𝑛 and the multiplicity of 𝑘[𝑋𝑛] is 1 = deg 𝐼 .

𝐼 = ⟨𝑥
𝑎
⟩ with deg 𝑥 = 𝑒, then dim 𝑘[𝑋𝑛]/𝐼 = 𝑛 − 1 and deg(𝐼 ) = deg(𝑥

𝑎
).

Proof of 2.3. Inclusion exclusion principle: ∣ ⋃𝑠

𝑖=1
𝑋𝑖 ∣= ∑

𝜙≠𝑇⊂[𝑆]

(−1)
|𝑇 |+1

∣ 𝑋𝑡 ∣where 𝑋𝑡 = ⋂
𝑖∈𝑇
𝑋𝑖

Let 𝐼 = ⟨𝑚1,… , 𝑚𝑠⟩ = 𝐼 , where 𝑚𝑖 are monomials. Denote by 𝑋𝑖(𝑗) set of degree 𝑗 monomials
in ⟨𝑚𝑖⟩ ⊂ 𝑘[𝑋𝑛]. hence for 𝑇 ⊂ [𝑠], 𝑋𝑇 (𝑗) = ⋂

𝑖∈𝑇
𝑋𝑖(𝑗) is the set of deg 𝑗 monomials that are

divisible by 𝑚𝑇 = lcm(𝑚𝑖)𝑖∈𝑇 . Define 𝑒𝑡 ∶= deg𝑚𝑇 . So

|𝑋𝑇 (𝑗)| =

{

0 𝑗 < 𝑒𝑡

(
𝑛−1+𝑗−𝑒𝑇

𝑛−1
) 𝑗 ≥ 𝑒𝑇

Thus

∑

𝑗≥0

|𝑋𝑇 (𝑗)|𝑧
𝑗
= ∑

𝑗≥𝑒𝑇

(

𝑛 − 1 + 𝑗 − 𝑒𝑇

𝑛 − 1 )
𝑧
𝑗
= ∑

𝑘≥0

(

𝑛 − 1 + 𝑘

𝑛 − 1 )
𝑧
𝑘+𝑒𝑇

= 𝑧
𝑒𝑇

1

(1 − 𝑧)
𝑛

Since

ℎ𝐴(𝑗) =
(

𝑛 − 1 + 𝑗

𝑛 − 1 )
− number of deg 𝑗 monomials in 𝐼 = ⟨𝑚1 … , 𝑚𝑠⟩

=
(

𝑛 − 1 + 𝑗

𝑛 − 1 )
− ∣ ⋃

𝑖∈[𝑗]

𝑋𝑖 ∣

We get

𝐻𝐴(𝑧) = ∑

𝑗≥0

ℎ𝐴(𝑗)𝑧
𝑗
=∑

𝑗≥0

(

𝑛 − 1 + 𝑗

𝑛 − 1 )
𝑧
𝑗
+ ∑

𝑇∈[𝑠]

(−1)
|𝑇 |
∑

𝑗≥0

|𝑋𝑇 (𝑗)|𝑧
𝑗

=

1

(1 − 𝑧)
𝑛
+ ∑

𝑇∈[𝑠]

(−1)
𝑇

𝑧
𝑒𝑇

(1 − 𝑧)
𝑛
=∶

𝑔(𝑧)

(1 − 𝑧)
𝑛

When 𝑔(𝑧) ∈ ℤ[𝑧], with 𝑔(0) = 1 writing 𝑔(𝑧) = (1 − 𝑧)
𝑣
𝜅𝐴(𝑧) with 𝜅𝐴(𝑧) ∈ ℤ[𝑧], suitable

𝑣 ∈ ℕ and 𝜅𝐴(1) ≠ 0, 𝜅𝐴(0) = 1. Hence 𝐻𝐴(𝑧) =
𝜅𝐴(𝑧)

(1−𝑧)
𝑑
where 𝑑 = 𝑛 − 𝑣. Write

𝜅𝐴(𝑧) =

𝑤

∑

𝑘=0

𝑐𝑘𝑧
𝑘 with 𝑐𝑘 ∈ ℤ

∑

𝑗≥0

ℎ𝐴(𝑗)𝑧
𝑗
= (

𝑤

∑

𝑘=0

𝑐𝑘𝑧
𝑘

)(∑

𝑙≥0

(

𝑑 − 1 + 𝑙

𝑑 − 1 )
𝑧
𝑙

)

comparing coefficients in deg 𝑗 >> 0, we get
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ℎ𝐴(𝑗) = ∑

𝑘+𝑙=𝑗

𝑐𝑘
(

𝑑 − 1 + 𝑙

𝑑 − 1 )
=

𝑤

∑

𝑘=0

𝑐𝑘
(

𝑑 − 1 + 𝑗 − 𝑘

𝑑 − 1 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

polynomial in 𝑗 − 𝑘

variables of deg 𝑑 − 1

= (

𝑤

∑

𝑘=0

𝑐𝑘)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝜅𝐴(1)

(

𝑗

𝑑 − 1)
+ lower order terms

=∶ 𝑝𝐴(𝑗) (Hilbert polynomial)

If ℎ𝐴(𝑗) = 0 whenever 𝑗 >> 0, then by definition 0 = 𝑑 = dim𝐴 and in this case 𝑝𝐴 is the zero
polynomial. Hence if 𝑑 > 0 , then ℎ𝐴(𝑗) > 0 if 𝑗 >> 0 and so the leading coefficient of 𝑝𝐴(𝑧)
must be positive, i.e., 𝜅𝐴(1) > 0

Definition 2.5. A monomial order is called degree compatible if

deg(𝑥
𝑎
) > deg(𝑥

𝑏
) ⟹ 𝑥

𝑎
> 𝑥

𝑏

for any two monomials.

2.6. For any ideal 𝐼 ⊂ 𝑘[𝑋𝑛] and any 𝑡 ∈ ℤ, set

𝐼≤𝑡 = {𝑓 ∈ 𝐼 ∶ deg 𝑓 ≤ 𝑡}

It is a 𝑘-subspace of 𝑘[𝑋𝑛]. WriteMon(𝑘[𝑋𝑛]) for the set of monomials in 𝑘[𝑋𝑛].

Lemma 2.7. Let < be a degree compatible monomial order. For any ideal 𝐼 ⊂ 𝑘[𝑋𝑛] = 𝑆, one
has

dim𝑘

𝑘[𝑋𝑛]≤𝑡

𝐼≤𝑡

= number of monomials in
𝑘[𝑋𝑛]≤𝑡

im<(𝐼 )

=∣ Mon(𝑘[𝑋𝑛])≤𝑡 − im<(𝑡) ∣

Proof. 𝐵 ∶= Mon(𝑘[𝑋𝑛])≤𝑡 − im<(𝐼 ). We claim

�̄� ⊂

𝑘[𝑋𝑛]≤𝑡

𝐼≤𝑡

is a 𝑘- basis

Mon(𝑘[𝑋𝑛]) − im(𝐼 ) is a 𝑘-basis of 𝑘[𝑋𝑛] − im(𝐼 ), by 1.14. �̄� spans remainder of any 𝐹 ∈ 𝑘[𝑋𝑛]

pon dividing by Gröbner basis of 𝐼 wrt < satisfies deg 𝑟 ≤ deg 𝑓 .

For 𝐼 ⊂ 𝑘[𝑋𝑛], the affine Hilbert funtion of 𝐴 = 𝑘[𝑋𝑛]/𝐼 is

ℎ
𝑎

𝐴
∶ℕ0 Ð⟶ ℤ

𝑗 ↦ ℎ
𝑎

𝐴
(𝑗) = dim𝑘

𝑘[𝑋𝑛]≤𝑗

𝐼≤𝑗

Lemma 2.8. For any degree compatible monoial order < on 𝐼 , one has

ℎ 𝑘[𝑋𝑛]

im<(𝐼 )

(𝑗) = ℎ
𝑎

𝐴
(𝑗) − ℎ

1

𝐴
(𝑗 − 1)

where 𝐴 = 𝑘[𝑋𝑛]/𝐼 .
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Proof. By definition, we have

ℎ 𝑘[𝑋𝑛]

im(𝐼 )

(𝑗) =∣ Mon(𝑘[𝑋𝑛])𝑗 − im(𝐼 ) ∣

2.7 ⟹ ℎ
𝑎

𝐴
(𝑗) =∣ Mon(𝑘[𝑋𝑛])≤𝑗 − im(𝐼 ) ∣

Remark 2.9. If 𝐴 ≠ 0, ℎ𝑎
𝐴
(0) = 1. Then by 2.8 we have ℎ𝑎

𝐴
(𝑗) =

𝑗

∑

𝑘=0

ℎ𝑘[𝑋𝑛]/ im(𝐼 )(𝑘). It follows

that generating function of ℎ𝑎
𝐴
and ℎ 𝑘[𝑋𝑛]

im<(𝐼 )

have analogous properties

2.10. We define dimensin of 𝐴,

dim

𝑘[𝑋𝑛]

𝐼

∶= dim𝑘

𝑘[𝑋𝑛]

im(𝐼 )

and the degree
deg(𝐼 ) = deg(im(𝐼 ))

where < is a degree compatible monomial order.

2.11. Let𝐺 = (𝐺,+) be an abelian group. A𝐺-graded ring𝑅 is a family of subgroups ([𝑅]𝑎∈𝐺) ≤
(𝑅,+) such that

1. 𝑅 = ⊕𝑎∈𝐺[𝑅]𝑎 ( as ℤ-modules )

2. [𝑅]𝑎 ⋅ [𝑅]𝑏 ⊂ [𝑅]𝑎+𝑏

The elements of [𝑅]𝑎 are called homogeneous of degree 𝑎.

Example 2.12. Fine or ℤ-grading of 𝑘[𝑋𝑛], where 𝐺 = ℤ
𝑛

[𝑆]𝑎 =

{

0 if some 𝑎𝑖 < 0

{𝜆𝑥
𝑎
∶ 𝜆 ∈ 𝑘}

Definition 2.13. 𝑅 = 𝐺−graded ring

1. 𝐺-graded 𝑅-module is an 𝑅-module 𝑀 with a decomposition ([𝑀]𝑎)𝑎∈𝐺 such that
𝑀 = ⊕𝑎∈𝐺[𝑀]𝑎 and [𝑅]𝑎 ⋅ [𝑀]𝑏 ⊂ [𝑀]𝑎+𝑏.

2. A 𝐺-graded or simply graded submoudle of such a graded 𝑀 is a graded submodule
𝑁 ⊂ 𝑀 such that

[𝑁 ]𝑎 ⊂ [𝑀]𝑎

Lemma 2.14. For an arbitrary submodule 𝑁 of a 𝐺 graded 𝑅-module 𝑀 the following are
equivalent

1. 𝑁 is a graded submodule

2. 𝑁 has a generating set consisting of homogeneous elemnents

3. If 𝑚 = ∑
𝑎∈𝐺

𝑚𝑎 with 𝑚𝑎 ∈ [𝑀]𝑎, then 𝑚 ∈ 𝑁 iff each 𝑚𝑎 ∈ 𝑁 .

4. 𝑀/𝑁 is a 𝐺-graded 𝑅-module with grading [𝑀/𝑁 ]𝑎 ∶=
[𝑀]𝑎+𝑁

𝑁
.

Proof.
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Example 2.15. 1. 𝑀 and 𝑁 are 𝐺-graded, then so is 𝑀 ⊕ 𝑁 with grading [𝑀 ⊕ 𝑁 ]𝑎 ∶=

[𝑀]𝑎 ⊕ [𝑁 ]𝑎 ( as 𝑅 modules). So if 𝑅 is 𝐺 graded, then so is 𝑅𝑛.

2. 𝐼 ⊂ 𝑘[𝑋𝑛] is a ℤ𝑛 graded submodule if 𝐼 is a monomial ideal.

3. Aℤ-graded or homogeneous ideal of 𝑘[𝑋𝑛], is an ideal that has generating set consisting
of homogeneous polyonomials. In that case 𝑘[𝑋𝑛]/𝐼 is a graded module.

2.16. A homomorphism of 𝐺-graded modules or a 𝐺-graded homomorphism is a 𝑅-module
homomorphism 𝜙 ∶ 𝑀 → 𝑁 that is degree preserving, 𝜙([𝑀]𝑎) ⊂ [𝑁 ]𝑎.

For any 𝑎 ∈ 𝐺 and a 𝐺-graded module 𝑀 , the module 𝑀(𝑎) has the same module structure as
𝑀 , but grading given by

[𝑀(𝑎)]𝑏 ∶= [𝑀]𝑎+𝑏

𝑀(𝑎) is a degree 𝑎 shift of 𝑀 . (Note here that the convention is opposite of that in algebraic
topology.)

Example 2.17. 1. Consider 𝑘[𝑋𝑛] with standard grading.

𝜙 ∶ 𝑘[𝑋𝑛] →𝑘[𝑋𝑛]

𝑓 ↦𝑥
2

1
𝑓

is not a graded homomorphism. However define

𝜓 ∶ 𝑘[𝑋𝑛](−2) →𝑘[𝑋𝑛]

𝑓 ↦𝑥
2

1
𝑓

then 𝑓 ∈ 𝑘[𝑋𝑛](−2) has degree deg 𝑓 + 2. So 𝑓 ∈ [𝑘[𝑋𝑛](−2)]deg 𝑓+2.

2. For any 𝑎 ≠ in 𝐺, 𝑅(𝑎) is not a graded ring, (because identity is not in 0 dimension), but
it is a graded 𝑅-module.

Lemma 2.18. If 𝜙 ∶ 𝑀 → 𝑁 is a homomorphism of graded modules, then ker𝜙, im𝜙, coker𝜙

are graded modules.

Proof. [ker𝜙]𝑎 = ker𝜙⋂[𝑀]𝑎, and [im𝜙]𝑎 = im𝜙⋂[𝑁 ]𝑎.

Example 2.19. 1. If𝑀 is aℤ graded module with generators𝑚1,… , 𝑚𝑡 where 𝑑𝑖 = deg𝑚𝑖,
then

𝜙 ∶

𝑡

⨁

𝑖=1

𝑅(−𝑑𝑖) Ð⟶𝑀

⎡

⎢

⎢

⎣

𝑟1

⋮

𝑟𝑡

⎤

⎥

⎥

⎦

↦

𝑡

∑

𝑖=1

𝑟𝑖𝑚𝑖

is a homomorphism of graded 𝑅-modules and is surjective.
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2. Consider 𝐼 = ⟨𝑥
3
, 𝑥𝑦, 𝑦

4
⟩ ⊂ 𝑘[𝑥, 𝑦] + 𝑆 with standard grading.

𝜙 ∶ 𝑆(−3) ⊕ 𝑆(−2) ⊕ 𝑆(−4) → 𝐼

⎡

⎢

⎢

⎣

𝑓1

𝑓2

𝑓3

⎤

⎥

⎥

⎦

↦ 𝑓1𝑥
3
+ 𝑓𝑥𝑦 + 𝑓3𝑦

4

ker𝜙 ∶

⟨

⎡

⎢

⎢

⎣

𝑦

−𝑥
2

0

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

0

𝑦
3

−𝑥

⎤

⎥

⎥

⎦

⟩

≃

←ÐÐÐÐÐ
graded hom

𝑆(−4) ⊕ 𝑆(−5)

There exists an exact sequence,

0 →

𝑆(−4)

⊕

𝑆(−5)

ÐÐÐÐÐÐÐ→

⎡

⎢

⎢

⎢

⎢

⎣

𝑦 0

−𝑥
2

𝑦
3

0 −𝑥

⎤

⎥

⎥

⎥

⎥

⎦

𝑆(−3)

⊕

𝑆(−2)

⊕

𝑆(−4)

𝜙

ÐÐÐÐÐÐÐÐ→

[
𝑥
3

𝑥𝑦 𝑦
4

]

𝑆 → 𝑆/𝐼 → 0

Definition 2.20. For any ℤ graded module 𝑀 over 𝑘[𝑋𝑛] its Hilbert function is

ℎ𝑚 ∶ ℤ → ℤ

𝑗 ↦ ℎ𝑚(𝑗) ∶= dim𝑘[𝑀]𝑗

assuming [𝑀]𝑗 is finitely generated for all 𝑗 .

Remark 2.21. For any monomial ideal 𝐼 ⊂ 𝑘[𝑋𝑛],2.1 and 2.20 agree.

dim𝑘[𝑘[𝑋𝑛]/𝐼 ]𝑗 =∣ [Mon(𝑘[𝑋𝑛])]𝑗 − 𝐼 ∣

Proposition 2.22. For every graded submodule 𝑀 of a finitely generated free 𝑘[𝑋𝑛] module
𝐹 and any monomial order < of 𝐹 ,

ℎ𝐹/𝑀(𝑗) =

ℎ𝐹 (𝑗)

im(𝑀)

∀𝑗 ∈ 𝑍

Corollary 2.23. For any finitely generated 𝑘[𝑋𝑛] submodule 𝑚 ≠ 0 , Hilbert series is of the
form

𝐻𝑀(𝑧) ∶= ∑

𝑗∈𝑍

ℎ𝑀(𝑗)𝑧
𝑗

=

𝜅𝑀(𝑧)𝑧
𝑡

(1 − 𝑧)
𝑑

where 𝜅𝑀(𝑧) ∈ ℤ[𝑧], 𝜅𝑀(0) ≠ 0, 𝜅𝑀(1) > 0, 𝑡 ∈ ℤ.

There is a HIlbert polynomial 𝑝𝑀(𝑧) ∈ ℚ(𝑧) such that

ℎ𝑀(𝑗) = 𝑝𝑀(𝑗) 𝑗 >> 0

(krull) dimension of 𝑀 is defined as
dim𝑀 = 𝑑

and the degree is
deg(𝑀) = 𝜅𝑀(1)
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Proof. Let 𝑀 be generated by 𝑚1,… , 𝑚𝑡 of degree 𝑑1,… , 𝑑𝑡 respectively. Define

𝜙 ∶ ⊕
𝑡

𝑖=1
𝑆(−𝑑𝑖)↠𝑀

𝑓 ↦𝑥
2

1
𝑓

is not a graded homomorphism. However define

𝜓 ∶ 𝑘[𝑋𝑛](−2) →𝑘[𝑋𝑛]

⎡

⎢

⎢

⎣

𝑓1

𝑣𝑑𝑜𝑡𝑠

𝑓𝑡

⎤

⎥

⎥

⎦

↦ ∑ 𝑓𝑖𝑚𝑖

Set 𝑁 = ker 𝜙 and we have a short exct sequence 0 → 𝑁 → 𝐹 → 𝑀 → 0 and by rank nullity
theorem we have ℎ𝑀(𝑗) = ℎ𝐹 (𝑗)−ℎ𝑁 (𝑗). 𝑆 and 𝐹 have desired Hilbert series which are rational
functions. So it is enough to show the same for 𝑁 , which is same as ℎ𝐹/ im(𝑁 ).

im(𝑁 ) is generated by monomials. So

𝐹

im(𝑁 )

≅

𝑡

⨁

𝑖=1

(

𝑆

𝐽𝑖

)

⏟⏞⏞⏟⏞⏞⏟

has the
desired

properties

(−𝑑𝑖)

for monomial ideals 𝐽𝑖.

Example 2.24. 1. 𝑆 = 𝑘[𝑋𝑛], 𝐹 −

𝑡

⨁

𝑖=1

𝑆(−𝑑𝑖). Then

𝐻𝑆(−𝑑𝑖)
(𝑧) =

𝑧
𝑑

𝑖

(1 − 𝑧)
𝑛

2. Consider 𝐼 = ⟨𝑥
3
, 𝑥𝑦, 𝑦

4
⟩ ⊂ 𝑘[𝑥, 𝑦] + 𝑆 with standard grading. 𝐴 = 𝑆/𝐼 . We have the

exact sequence,

0 →

𝑆(−4)

⊕

𝑆(−5)

Ð→

𝑆(−3)

⊕

𝑆(−2)

⊕

𝑆(−4)

𝜙

ÐÐÐÐÐÐÐÐ→

[
𝑥
3

𝑥𝑦 𝑦
4

]

𝑆 → 𝐴 = 𝑆/𝐼 → 0

𝐻𝐴(𝑧) =𝐻𝑆(𝑧) − 𝐻𝑆(−3)⊕𝑆(−2)⊕𝑆(−4)(𝑧) + 𝐻𝑆(−4)⊕𝑆(−5)(𝑧)

=𝐻𝑆(𝑧) − 𝐻𝑆(−3)(𝑧) − 𝐻𝑆(−2)(𝑧) + 𝐻𝑆(−4)(𝑧) + 𝐻𝑆(−5)(𝑧) − 𝐻𝑆(−4)(𝑧)

=

1 − 𝑧
3
− 𝑧

2
+ 𝑧

5

(1 − 𝑧)
2

=1 + 3𝑧 + 2𝑧
2
+ 𝑧

3

So dim𝐴 = 0 and deg𝑀 = 6 (polyonomial evaluated at 1).
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Lemma 2.25. Let 𝑑 ∈ 𝑁 . Every 𝑎 ∈ ℕ admits a unique presentation of the form

𝑎 =
(

𝑘𝑑

𝑑)
+
(

𝑘𝑑−1

𝑑 − 1)
+⋯ +

(

𝑘𝑠

𝑠)

with integers 𝑘𝑑 > 𝑘𝑑−1⋯ > 𝑘𝑠. It is called the 𝑑-Macaulay presentation of 𝑎.

Example 2.26. For 𝑑 = 3 and 𝑎 = 12, we have

12 =
(

5

3)
+
(

2

2)
+
(

1

1)

Definition 2.27. If 𝑎 > 0 with 𝑑-Macaulay presentation

𝑎 =
(

𝑘𝑑

𝑑)
+
(

𝑘𝑑−1

𝑑 − 1)
+⋯ +

(

𝑘𝑠

𝑠)

set
𝑎
⟨𝑑⟩

=
(

𝑘𝑑+1

𝑑 + 1)
+
(

𝑘𝑑

𝑑)
+⋯ +

(

𝑘𝑠+1

𝑠 + 1)

Example 2.28. 12⟨3⟩ = 17

Theorem 2.29 (Macaulay). Let ℎ ∶ ℕ0 → ℤ, the following are equivalent,

1. There is some 𝑛 ∈ ℕ0 and some homogeneous ideal 𝐼 ⊂ 𝑘[𝑋𝑛] such that Hilbert function
of 𝐴 = 𝑘[𝑋𝑛]/𝐼 is ℎ.

2. There is a monomial ideal (Lexicographic ideal) 𝐼 ⊂ 𝑘[𝑋𝑛] with 𝑛 = ℎ(1) such that
Hilbert function of 𝐴 is ℎ.

3. ℎ(0) = 1 and
ℎ(𝑗 + 1) ≤ ℎ(𝑗)

⟨𝑗⟩ if 𝑗 > 0

Moreover for every graded 𝑘-algebra 𝐴, one has

ℎ𝐴(𝑗 + 1) = ℎ𝐴(𝑗)
⟨𝑗⟩ if 𝑗 >> 0

Example 2.30.
𝑗 0 1 2 3 4 5 6
̃
ℎ 1 4 10 12 18 18 ⋯

ℎ 1 4 10 12 17 17 ⋯

̃
ℎ is not a possible Hilbert function because 12⟨3⟩ = 17. While ℎ is a possible Hilbert function.
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3 Ideals and Schemes

3.1 Affine case
Definition 3.1. A ring 𝑅 is reduced if 𝑟𝑛 = 0 for some 𝑛 ∈ ℕ implies 𝑟 = 0.

Lemma 3.2. Considere a reduced ring 𝑅 and an ideal 𝐼 of 𝑅. Then 𝑅/𝐼 is reduced iff 𝐼 =
√

𝐼 .

Hilbert’s Nullstellensatz gives bijection if 𝑘 = ̄
𝑘. Let 𝑆 = 𝑘[𝑥1,… , 𝑥𝑛].

{

Subvarieties of
𝔸

𝑛

𝑘

}

𝐼

←
Ð
Ð
Ð
Ð
→

𝑍

{Radical Ideals of
𝑆

}

←
Ð
Ð
→

{

Reduced factor
rings of 𝑆

}

𝐽 ↦ 𝑆/𝐽

ker(𝑆 → 𝐴) ↤ 𝐴

Definition 3.3. The geometric object 𝑋 associated to an ideal 𝐽 ⊂ 𝑆 is called an affine (sub)
scheme of 𝔸𝑛

𝑘
. 𝐼𝑋 ∶= 𝐽 is called the defining ideal of 𝑋 and 𝑆/𝐽 is called co-ordinate ring.

𝑋 = spec(𝑆/𝐽 ) to denote the scheme 𝑋 . The reduced subscheme of 𝑋 is 𝑋𝑟𝑒𝑑 = spec(𝑆/

√

𝐽 ).
It is also called the support of 𝑋 .

Remark 3.4. 1. Definition 3.3 is a special case of an affine scheme. Spec(𝑆/𝐽 ) is the set
of prime ideals of 𝑆/𝐽 endowed with Zariski topology where closed sets are of the form
𝑉 (𝑝) where 𝑝 is a prime in 𝑆 containing 𝐽 .

2. If 𝑘 =
̄
𝑘, then the points of 𝑋 = Spec(𝑘[𝑋𝑛]/

√

𝐽 ) ⊂ 𝔸
𝑛

𝑘
are the points of 𝑋𝑟𝑒𝑑 = 𝑍(𝐽 ) =

𝑍(

√

𝐽 ). ( The scheme 𝑋 captures more information, for example multiplicities of the
common zeroes)

Example 3.5. For any 𝑗 ∈ ℕ the scheme 𝑌𝑗 ⊂ 𝔸
𝑛 defined by (𝑥1,… , 𝑥𝑛)

𝑗 is supported at the
point (0,… , 0) i.e. (𝑌𝑗)𝑟𝑒𝑑 = {(0,… , 0)}. Sometimes 𝑌𝑗 is called a fat point.

Definition 3.6. The dimension of 𝑌 = Spec(𝑘[𝑋𝑛]/𝐽 ) is dim 𝑌 = dim 𝑘[𝑋𝑛]/𝐽 (as defined
using Hilbert series 2.3)

Example 3.7. dim Spec
𝑘[𝑋𝑛]

(𝑥1,…,𝑥𝑛)
𝑗
= 0 ∀𝑗

Definition 3.8. Let 𝑋, 𝑌 ⊂ 𝔸
𝑛 be subschemes of 𝔸𝕟. Then 𝑋 is called a subscheme of 𝑌 , if

𝐼𝑌 ⊂ 𝐼𝑋 . In symbols 𝑋 ⊂ 𝑌 .

The intersection 𝑋 ∩ 𝑌 is the scheme defined by 𝐼𝑋 + 𝐼𝑌 and the union 𝑋 ∪ 𝑌 is defined by
𝐼𝑋 ∩ 𝐼𝑌 .

Example 3.9. Continuing with the notation used in 3.5, we have 𝑌1 ⊊ 𝑌2 ⊊ ⋯, but 𝑌2 ⊈

Spec(

𝑘[𝑋𝑛]

(𝑥2,… , 𝑥𝑛)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

line

("fat point sticks out of line")

Theorem 3.10 (Primary decomposition theorem).

Example 3.11. An affine scheme 𝑌 ⊂ 𝔸
𝕟 is irreducible if for any subschemes 𝑌1, 𝑌2 ⊂ 𝑌 with

𝑌1 ∪ 𝑌2 = 𝑌 either 𝑌 = 𝑌1 or 𝑌 = 𝑌2 or 𝑌𝑟𝑒𝑑 = (𝑌1)𝑟𝑒𝑑 = (𝑌2)𝑟𝑒𝑑
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Lemma 3.12. 1. 𝑌 is irreducible iff 𝐼𝑌 is primary.

2. 𝑌 is irreducible and reduced iff 𝐼𝑌 is a primary ideal.

3.13. 1. The fat points 𝑌𝑗 in 3.5 are irreducible but not reduced if 𝑗 ≥ 2

2. A line 𝑌 is defined by 𝐼𝑌 = ⟨𝑙1,… , 𝑙𝑛−1⟩, where 𝑙𝑖 are linear independent polynomials in
𝑘[𝑋𝑛]. Any line is reduced and irreducible.

Corollary 3.14. Every affine scheme is a finite union of irreducible schemes

3.2 Projective Schemes
3.15 Notation. 𝑚 = ⟨𝑥0,… , 𝑥𝑛⟩ ⊂ 𝑘[𝑥0,… , 𝑥𝑛] ⊂ 𝑆.

𝐽 ⊊ 𝑆 is a homogeneous ideal or equivalently 𝐽 ⊂ 𝑚

If 𝑘 = ̄
𝑘 we have bijections

{
𝑉 ⊂ ℙ

𝑛

projective
variety

}

𝐼

←
Ð
Ð
Ð
Ð
→

𝑍

{ homogeneous
Radical Ideals

𝐽 ⊂ 𝑚

}

←
Ð
Ð
→

{Reduced graded
quotient
rings of 𝑆

}

Definition 3.16. Let p be a prime ideal. A p-primary ideal q is a primary ideal q with√
q = 𝑝

Lemma 3.17. A homogeneous ideal 𝐽 ⊂ 𝑚 is 𝑚− primary iff
√

𝐽 = 𝑚.

Definition 3.18. The saturation of a homogeneous ideal 𝐽 is the ideal

𝐽
sat

∶= ⋃

𝑛≥1

(𝐽 ∶ 𝑚
𝑘
) ⊃ 𝐽

𝐽 is saturated if 𝐽 = 𝐽
sat.

Lemma 3.19. Let 𝐽 ⊂ 𝑚 be homogeneous. TFAE

1. 𝐽 is saturated

2. 𝑚 is not an associated prime ideal of 𝑆/𝐽 .

3. There is some homogeneous 𝑓 ∈ 𝑆 of positive degree such that ̄
𝑓 ∈ 𝑆/𝐽 is a non-zero

divisor equivalent to (𝐽 ∶ 𝑓 ) = 𝐽 .

Remark 3.20. 1. If 𝐽 = 𝑞1 ∩ 𝑞2 ∩ ⋯ ∩ 𝑞𝑠 is a minimal primary decomposition of 𝐽 with
homogeneous 𝑞𝑖 and say 𝑞𝑠 is 𝑚−primary , then

𝐽
sat

= 𝑞1 ∩⋯ ∩ 𝑞𝑠−1

2. If
√

𝐽 ⊊ 𝑚 then 𝐽 sat is the largest homogeneous ideal 𝐼 ⊂ 𝑆 such that [𝐽 ]𝑘 = [𝐼 ]𝑘 for any
𝑘 >> 0. ([𝐽 ] − 𝑘 is the space of polynomials of degree 𝑘.)

Example 3.21. Consider 𝐽 = ⟨𝑥
3
, 𝑥

2
𝑦⟩ = ⟨𝑥

2
⟩ ∩ ⟨𝑥

3
, 𝑦⟩

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

⟨𝑥,𝑦⟩

. 𝐽 sat = ⟨𝑥
2
⟩. In 𝑘[𝑥, 𝑦, 𝑧], 𝐽 sat = 𝐽

14



Definition 3.22. For every homogeneous ideal 𝐽 with
√

𝐽 ⊊ 𝑚, we consider 𝑆/𝐽 sat as a
geometric object 𝑋 called a projective (sub)scheme of ℙ𝑛. The homogeneous ideal of 𝑋 is
𝐼𝑋 = 𝐽

sat and 𝑆/𝐽 sat is called the homogeneous coordinate ring of 𝑋 . Sometimes we write
𝑋 = Proj(𝑆/𝐽 ) = Proj(𝑆/𝐽

sat
) for the projective scheme defined by 𝐽 .

Remark 3.23. 1. One has the following bijections

{∅}⋃

{ Projective
subschemes

of ℙ𝑛

}

1∶1

↔ {𝑚}⋃

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

homogeneous
saturated ideals

𝐽

with
√

𝐽 ⊊ 𝑚

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

1∶1

↔ {

𝑘

≅ 𝑆/𝑚
}⋃

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

graded quotient
ring

of 𝑆 with a
non-zero
divisor of

positive degree

⎫
⎪
⎪
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎭

2. For projective subschemes 𝑋, 𝑌 ⊂ ℙ
𝑛 the concepts of reducible, irreducible, 𝑋 ⊂ 𝑌 , 𝑋 ∩

𝑌 , 𝑋 ∪ 𝑌 are analogous to affine case.

𝐼𝑋∩𝑌 = (𝐼𝑋 + 𝐼𝑌 )
sat

𝐼𝑋∪𝑌 = (𝐼𝑋 ∩ 𝐼𝑌 )

Example 3.24. 𝑋, 𝑌 ⊂ ℙ
3 be schemes with homogeneous ideals

𝐼𝑋 = ⟨𝑥0, 𝑥1⟩ ∩ ⟨𝑥2, 𝑥3⟩ ¢ pair of skew lines

𝐼𝑌 = ⟨𝑥1 + 𝑥2⟩ ¢ hyperplane

𝑋 ∩ 𝑌 should consist of two points.

𝐼𝑋 + 𝐼𝑌 = ⟨𝑥0, 𝑥1, 𝑥2⟩ ∩ ⟨𝑥1, 𝑥2, 𝑥3⟩ ∩ ⟨𝑥0, 𝑥3, 𝑥1 + 𝑥2, 𝑥1𝑥2⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⟨𝑥0,…,𝑥3⟩−primary

𝐼𝑋∩𝑌 = (𝐼𝑋 + 𝐼𝑌 )
sat

= ⟨𝑥0, 𝑥1, 𝑥2⟩ ∩ ⟨𝑥1, 𝑥2, 𝑥3⟩ and 𝑋 ∩ 𝑌 = 𝑋 ∩ 𝑌red = {(0 ∶ 0 ∶ 0 ∶ 1), (1 ∶ 0 ∶ 0 ∶

0)}.
dim𝑋 = 1, dim 𝑌 = 2

deg𝑋 = 2, deg 𝑌 = 1

Definition 3.25. For a projective subscheme 𝑋 ⊂ ℙ
𝑛, we define it’s dimension as

dim(𝑋 ) = dim(𝑆/𝐼𝑋 ) − 1

and degree as
deg𝑋 = deg 𝐼𝑋 = deg(𝑆/𝐼𝑋 )
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4 Bezout’s theorem

Definition 4.1. Consider any 𝑅- module 𝑀 . An element 𝑟 ∈ 𝑅 is called 𝑀-regular if 𝑟𝑚 = 0

for any 𝑚 ∈ 𝑀 ⟹ 𝑚 = 0𝑀 Otherwise 𝑟 is called a zero-divisor of 𝑀 .

Note. 𝑓 ∈ 𝑅 is 𝑀-regular if 0 ∶𝑀 𝑓 = 0 ∶𝑀 ⟨𝑓 ⟩ = 0

Example 4.2. The zero divisors of ℤ− mod 𝑍/6𝑍 are precisely the integers ⟨2⟩ ∪ ⟨3⟩

Proposition 4.3. If𝑀 is finitely generated graded 𝑆-module and 𝑓 ∈ 𝑆 is𝑀 regular of positive
degree, then

1. dim𝑀/𝑓 𝑀 = dim𝑀 − 1

2. deg𝑀/𝑓 𝑀 = deg 𝑓 deg𝑀

Proof. Since 𝑓 is 𝑀 regular, there exists a short exact sequence (𝑑 = deg 𝑓 )

0 → 𝑀(−𝑑)

𝑓

↦ 𝑀 →

𝑀

𝑓𝑀

→ 0

𝑚 ↦ 𝑓 𝑚

So ℎ𝑀/𝑓 𝑀(𝑗) = ℎ𝑀(𝑗) − ℎ𝑀(𝑗 − 𝑑)

Lemma 4.4 (Mayer-Vietoris sequence). If𝑁1, 𝑁2 ar graded submodules of a graded submodule
𝑀 , then there is a SEQ of graded modules

0 →

𝑀

𝑁1 ∩ 𝑁2

→

𝑀

𝑁1

⊕

𝑀

𝑁2

→

𝑀

𝑁1 + 𝑁2

→ 0

𝑚 ↦(𝑚,𝑚)

(𝑚1, 𝑚2) ↦ 𝑚1 − 𝑚2

Corollary 4.5. If 𝐼 , 𝐽 ⊂ 𝑆 are homogeneous ideals, then ℎ 𝑆

𝐼+𝐽
(𝑘)

= ℎ 𝑆

𝐼

(𝑘) + ℎ 𝑆

𝐼∩𝐽

(𝑘) for all 𝑘 ∈ ℤ.

Corollary 4.6. 1. dim(
𝑆

𝐼∩𝐽
) = max{dim 𝑆/𝐼 , dim 𝑆/𝐽 }

2. If WLOG dim 𝑆/𝐼 ≥ dim 𝑆/𝐽 , then

deg(

𝑆

𝐼 ∩ 𝐽

) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑑𝑒𝑔𝑆/𝐼 dim 𝑆/𝐼 > dim 𝑆/𝐽

deg 𝑆/𝐼 + deg 𝑆/𝐽 dim 𝑆/𝐼 = dim 𝑆/𝐽 > dim 𝑆/𝐼 + 𝐽

deg 𝑆/𝐼 + deg 𝑆/𝐽 dim 𝑆/𝐼 = dim 𝑆/𝐼 + 𝐽

−deg 𝑆/𝐼 + 𝐽
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5 Free Resolutions

5.1 Notation. 𝑆 = 𝑘[𝑥0,… , 𝑥𝑛] where deg 𝑥𝑖 = 1, 𝑚 = ⟨𝑥0,… 𝑥𝑛⟩ = ⊕𝑗>0[𝑆]𝑗

𝐴 = 𝑆/𝐼 , 𝑚 = 𝑚𝐴 = ⨁

𝑗>0

[𝑆/𝐼 ]𝑗

𝑀 finitely generated ℤ graded 𝐴-module. 𝜙 ∶ 𝑀 → 𝑁 hom of graded modules (degree
preserving).

Lemma 5.2 (Nakayama’s lemma). 1. If 𝑀

𝑚𝑀
= 0, then 𝑀 = 0

2. If the images of homogeneous 𝑚1, ..., 𝑚𝑡 ∈ 𝑀 generate 𝑀

𝑚𝑀
as an 𝐴 module, then they

generated 𝑀 as an 𝐴 module.

Proof. 1. See Eisenbud Cor 4.8

2. Set 𝑁 =
𝑀

⟨𝑚1,...𝑚𝑡 ⟩
, then 𝑁

𝑚𝑁
≅

𝑀

𝑚𝑀+⟨𝑚1,…,𝑚𝑡 ⟩
= 0. This gives 𝑁 = 0, ⟹ 𝑀 = ⟨𝑚1,… , 𝑚𝑡⟩.

Corollary 5.3. For homogeneous elements 𝑚1,… , 𝑚𝑡 ∈ 𝑀 TFAE:

1. 𝑀 = ⟨𝑚1,… , 𝑚𝑡⟩

2. The images 𝑚1,… , 𝑚𝑡 in 𝑀/𝑚𝑀 genearted 𝑀/𝑚𝑀 as a module over 𝐴/𝑚 ≃ 𝑘.

Definition 5.4. A minimal generating set 𝐺 consists of homogeneous lements such that 𝐺
{𝑔} is not a generating set ∀𝑔 ∈ 𝐺. . .

Corollary 5.5. If {𝑚1,… , 𝑚𝑡} , {𝑛1,… , 𝑛𝑠} are minimal generating sets of 𝑀 , then 𝑠 = 𝑡 and
deg𝑚𝑖 = deg 𝑛𝑖 for 𝑖 ∈ [𝑡] upto reindexing.

Definition 5.6. Let 𝜙 ∶ 𝐹 → 𝑀 be any surjective hom of fg graded 𝐴 modules, where 𝐹 is
free.

1. The fg 𝐴 module ker𝜙 is called a (first) syzygy module of 𝑀 (over 𝐴). It’s elements are
called (first) syzygies (correspond to relations among generators of 𝑀).

2. The map 𝜙 is said to be minimal if the induced hom

𝜙 ∶

𝐹

𝑚𝐹

≈

Ð→
𝑀

𝑚𝑀

𝑓 ↦ 𝜙(𝑓 )

is an isomorphism of 𝑘-vector spaces where 𝑘 ≃ 𝐴/𝑚.

Remark 5.7. Let {𝑒1,… , 𝑒𝑠} be a basis of 𝐹 . Then 𝜙 is minimal iff {𝜙(𝑒1),… , 𝜙(𝑒𝑠)} is a min gen
set of 𝑀 .

Example 5.8. 𝑆 = 𝑘[𝑥].

0 → 𝑆(−1)

𝑥

Ð→ 𝑆

𝜙

Ð→ 𝑘 → 0 𝜙 is minimal

17



0 →

𝑆(−1)

⊕

𝑆

⎛

⎜

⎜

⎝

𝑥 0

0 1

⎞

⎟

⎟

⎠

ÐÐÐÐ→ 𝑆
2

𝜓

Ð→ 𝑘 → 0 𝜓 is not minimal

In fact ker𝜓 ≅ ker𝜙 ⊕ 𝑆.

Lemma 5.9. The first syzygy module of𝑀 is unique upto isomorphism and free direct sums.

Proof. Consider surjective map 𝜙 ∶ 𝐹 → 𝑀 where 𝐹 = ⊕
𝑡

𝑖=1
𝐴𝑒𝑖.

1. Suppose 𝜙 is not minimal. WLOG {𝜙(𝑒1),… , 𝜙(𝑒𝑟)} is a min gen set of 𝑀 (𝑟 ≤ 𝑡). Write
𝐹 − 𝐺 ⊕ 𝑃 where 𝐺 = ⊕

𝑟

𝑖=1
𝐴𝑒𝑖 and 𝑃 = ⊕

𝑡

𝑖=𝑟+1
𝐴𝑒𝑖. Then the restriciont 𝜓 = 𝜙|𝐺 ∶ 𝐺 → 𝑀

is minimal.
0

0 ker𝜓 𝐺 𝑀 0

0 ker𝜙 𝐹 𝑀 0

𝑃

0

𝜓

𝜙

The commutative diagram induces (snake lemma) a short exact sequence

0 → ker𝜓 → ker𝜙 → 𝑃 → 0

𝑃 free ⟹ ker𝜙 = 𝑃 ⊕ ker𝜓 ↝ syzygy from minimal map.

2. Assume 𝜙 is minimal and 𝜓 ∶ 𝐺 → 𝑀 is another minimal homomorphism. To show
ker𝜙 ≅ ker𝜓. By 5.5 there is an isomorphism 𝜖 ∶ 𝐺 → 𝐹 such that

0 ker𝜓 𝐺 𝑀 0

0 ker𝜙 𝐹 𝑀 0

𝜖

this commutative diagram gives us ker𝜙 ≅ ker𝜓.

Definition 5.10 (Minimal Free resolution). 1. A hom 𝜙 ∶ 𝐹 → 𝐺 of free 𝐴 - modules is
called minimal if im(𝜙) ≤ 𝑚𝐴𝐺.

2. A (graded) free resolution of 𝑀 ( over 𝐴) is an exact sequence of fg graded 𝐴 modules

𝐹∙ ⋯ → 𝐹𝑡

𝜙𝑡

Ð→ 𝐹𝑡−1 → ⋯ → 𝐹1

𝜙1

Ð→ 𝐹0 → 𝑀 → 0

where each 𝐹𝑖 is free and 𝜙𝑖 is graded.
It is called minimal free resolution if each 𝜙𝑖 with 𝑖 ≥ 1 is minimal.
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Remark 5.11. 1. 𝜙 ∶ 𝐹

[𝐵]

Ð→ 𝐺 is minimal iff any coordinate matrix of 𝜙 does not have any
units of 𝐴 as entries.

2. The first sequence in 5.8 is a MFR, but second sequence is a free resolution but not
minimal.

Theorem 5.12. 1. Any fg graded 𝐴 module has a MFR (graded ) 𝐹∙.

2. If 𝐺 is any free resolution of 𝑀 , then there is a complex 𝑃∙ of free 𝐴 modules and an
isomorphism of complexes 𝐺∙ ≅ 𝐹∙⊕𝑃∙. In particular any twoMFR of𝑀 are isomorphic.

Proof. 1. Existence and uniqueness follows from iterating 5.7 and 5.9.

𝐹2 𝐹1 𝐹0 𝑀 0

ker𝜙1 ker𝜙

0 0

𝜙2 𝜙1 𝜙

2. Suppose 𝐺 is not minimal, we will show that we can "cancel" at least a (shifted) copy
of 𝐴 in two consecutive free modules. Indeed by assumption there is some 𝑖 ≥ 1, such
that 𝜙𝑘 is not minimal. Fix a coordinate matrix 𝐵 = (𝑏𝑖𝑗) of 𝜙𝑘. It contains a unit, say
𝑏𝑖0𝑗0

∈ 𝑘
⋆.

Performing elementary row and column operations (changing base of 𝐺𝑘, 𝐺𝑘−1) we get
another coordinate matrix.

�̃� =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

⋮

0⋯ 𝑏𝑖0𝑗0
0⋯

⋮

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Denote by 𝐵′, the matrix obtained from �̃� by deleting row 𝑖0 and column 𝑗0.
Then 𝜙𝑘 decomposes as

𝜙𝑘 =

𝜙
′

𝑘

⊕

𝜓

∶

𝐺
′

𝑘

⊕

𝐴(−𝑑)

→

𝐺
′

𝑘−1

⊕

𝐴(−𝑑)

and
𝜙
′

𝑘
∶ 𝐺

′

𝑘

𝐵
′

Ð→ 𝐺
′

𝑘−1

is given by multiplication by 𝐵′ and

𝜓 ∶ 𝐴(−𝑑)

𝑏𝑖
0
𝑗
0

ÐÐ→
≈

𝐴(−𝑑)

Since ker𝜙𝑘 = ker𝜙
′

𝑘
and im𝜙𝑘 = im𝜙

′

𝑘
⊕ 𝐴(−𝑑) the sequence obtained from 𝐺0 by

cancelling the complex

0 → 𝐴(−𝑑)

𝑏𝑖
0
𝑗
0

ÐÐ→ 𝐴(−𝑑) → 0
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is also a free resolution of 𝑀 .

Definition 5.13. Let ⋯ → 𝐹1 → 𝐹0 → 𝑀 → 0 be a MFR of𝑀 . By the previous theorem, there
are unique integers 𝛽𝑖𝑗 ∈ ℕ0 such that 𝐹𝑖 ≅ ⊕𝑗𝐴(−𝑗)

𝛽𝑖𝑗

The numbers 𝛽𝐴
𝑖𝑗
(𝑀) are called the graded Betti numbers of 𝑀 (over 𝐴).

Example 5.14. Consider 𝐼 = ⟨𝑥
2
, 𝑥𝑦, 𝑦

3
⟩ ⊂ 𝑆 = 𝑘[𝑥, 𝑦]. Then 𝑆/𝐼 has a MFR

0 →

𝑆(−3)

⊕

𝑆(−4)

⎛

⎜

⎜

⎜

⎜

⎝

𝑦 0

−𝑥 𝑦
2

0 −𝑥

⎞

⎟

⎟

⎟

⎟

⎠

ÐÐÐÐÐÐ→

𝑆(−2)
2

⊕

𝑆(−3)

(
𝑥
2

𝑥𝑦 𝑦
3

)

ÐÐÐÐÐÐÐÐÐ→ 𝑆 → 𝑆/𝐼 → 0

Definition 5.15. 1. 𝐹 = ⊕
𝑟

1
𝐴𝑒𝑖 . Define the 𝑗 𝑡ℎ exterior power to be the free 𝐴-module ∧𝑗𝐹

whose basis elements are of the form

𝑒𝑖1
∧ 𝑒𝑖2

∧⋯ ∧ 𝑒𝑖𝑗
with 1 ≤ 𝑒𝑖 < 𝑖2 < ⋯ < 𝑖𝑗 ≤ 𝑟

Thus rank(∧𝑗𝐹) = (
𝑟

𝑗
).

2. 𝑔∙ = 𝑔1,… , 𝑔𝑟 ∈ 𝐴 be sequence of homogeneous elements. Set 𝐹 = ⊕
𝑟

1
𝐴𝑒𝑖 with deg 𝑒𝑖 =

deg 𝑔𝑖. Then the Koszul complex to 𝑔∙ is the complex

𝐾∙(𝑔∙) ∶ 0 → ∧
𝑟
𝐹 → ∧

𝑟−1
𝐹 → ⋯ → ∧

𝑗
𝐹

𝜙𝑗

Ð→ ∧
𝑗−1
𝐹 → ⋯ → ∧𝐹 → ∧

0
𝐹 = 𝐴 →

𝐴

⟨𝑔1,… , 𝑔𝑟⟩

= 𝐹 → 0

with

𝜙𝑗 ∶ ∧
𝑗
𝐹 → ∧

𝑗−1
𝐹

𝑒𝑖1 ∧ 𝑒𝑖2 ∧⋯ ∧ 𝑒𝑖𝑗 ↦

𝑗

∑

𝑘=1

(−1)
𝑘+1
𝑔𝑖𝑘
𝑒𝑖1 ∧ 𝑒𝑖2 ∧⋯ ∧ 𝑒𝑖𝑘

∧⋯ ∧ 𝑒𝑖𝑗

It is a graded complex: 𝜙𝑗−1𝜙𝑗 = 0 and deg(𝑒𝑖1
∧ 𝑒𝑖2

∧⋯ ∧ 𝑒𝑖𝑗
) = ∑

𝑗

1
deg 𝑒𝑖𝑘

Example 5.16. The complex to 𝑥2, 𝑦 over 𝑆 = 𝑘[𝑥, 𝑦] is

0 →
𝑆(−3)

< 𝑒1 ∧ 𝑒2 >

⎡

⎢

⎢

⎣

−𝑦

𝑥
2

⎤

⎥

⎥

⎦

ÐÐÐ→

𝑆(−2)

⊕

𝑆(−1)

[𝑥
2
𝑦]

ÐÐ→
𝑆

(𝑥
2
, 𝑦)

→ 0

It is exact.

"repeating elements break exactness"

0 → 𝑆(−3)

⎡

⎢

⎢

⎣

−1

1

⎤

⎥

⎥

⎦

ÐÐ→

𝑆(−2)

⊕

𝑆(−2)

[𝑥
2
𝑥
2
]

ÐÐÐ→ 𝑆 → 0
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cancel
0 → 𝑆(−2)

𝑥
2

Ð→ 𝑆 →

𝑆

𝑥
2
→ 0

which is the Koszul comlex of 𝑥2.

Proposition 5.17. The Koszhul complex to 𝑔∙ = 𝑔1,… , 𝑔𝑟 ∈ 𝐴 is exact iff 𝑔1,… , 𝑔𝑟 is a regular
sequence.

Proof. Refer Eisenbud.

Theorem 5.18 (Hilbert’s Syzygy theorem). Every finitely generated graded 𝑆 = 𝑘[𝑥0,… , 𝑥𝑛]-
module 𝑀 has a finte minmal finite resolution:

0 → 𝐹𝑡 → 𝐹𝑡−1 → ⋯ → 𝐹0 → 𝑀 → 0

with 𝑡 ≤ 𝑛 + 1 dim 𝑆.

Proof. There is a homological argument using Koszul complex on 𝑥0,… , 𝑥𝑛 and another con-
structive proof using Gröbner basis.

Example 5.19. 𝐴 =
𝑘(𝑥)

𝑥
2

⋯ → 𝐴(−2)

𝑥

Ð→ 𝐴(−1)

𝑥

Ð→
𝐴

𝑥

= 𝑘 → 0

is a MFR of 𝑘 over 𝐴. It is infinite.

Remark 5.20. Describing which sets of graded Betti numbers occur among (classes of ) fg
graded 𝑆-modules is an active area of research.

Theorem 5.21. The greaded Betti number of fg graded 𝑆 module determine its Hilbert series

𝐻𝑚(𝑧) =

∑
𝑖,𝑗
(−1)

𝑖
𝛽𝑖,𝑗(𝑧)

𝑗

(1 − 𝑧)
𝑛+1

← rational

Proof. Let 0 → 𝐹𝑡 → ⋯ → 𝐹1 → 𝐹0 → 𝑀 → 0 be a MFR of 𝑀 . Then

𝐻𝑀(𝑧) =

𝑡

∑

𝑖=0

(1)
𝑗
𝐻𝐹𝑖

(𝑧)

𝐻𝑆(−𝑗)(𝑧) =

𝑧
𝑗

(1 − 𝑧)
𝑛+1

Since 𝐹𝑖 ≅ ⊕𝑗𝑆(−𝑗)
𝛽𝑖,𝑗 , the claim follows.

Definition 5.22. The depth of a graded 𝐴-module 𝑀 is the maximal length of a 𝑀-regular
seqeunce consisting of homogeneous elements of𝐴 of positive degree, denoted by depth

𝐴
(𝑀).

Remark 5.23. 1. For any homogeneous ideal 𝑆, 𝐼 ⊂ 𝑚𝑠

depth(𝑆/𝐼 ) ≥ 1 ⟺ 𝐼 is saturated
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2. For any graded 𝑀 , depth(𝑀) ≤ dim(𝑀). (dim = 0 ⟹ depth = 0.)

Definition 5.24. A finitely generated𝐴-module is it Cohen-Macaulay if depth(𝑀) = dim(𝑀).

Example 5.25. 1. 𝑆 is CM as an 𝑆-module.

2. Any 0-dimensinoal module is CM.

3. For 𝐼 = ⟨𝑥
3
, 𝑥

2
𝑦⟩ = ⟨𝑥

2
⟩ ∩ ⟨𝑥

3
, 𝑦⟩ ⊂ 𝑘[𝑥, 𝑦] dim 𝑆/𝐼 = 1 and depth

𝑠
𝑆/𝐼 = 0. (𝐼 𝑠𝑎𝑡 = ⟨𝑥

2
⟩).

So /𝐼 is not CM.

4. If 𝑋 ⊂ ℙ
𝑛, dim𝑋 = 0. 𝑆/𝐼𝑋 is CM 𝑆-module.

5. dim 𝑆/𝐼𝑥 = 1 ≥ depth 𝑆/𝐼𝑥 ≥ 1(since 𝐼𝑥 is saturated.)

Proposition 5.26. A 𝐾 algebra𝐴 = 𝑆/𝐼 is CM (as an𝐴-module) iff there is graded polynomial
subalgebra 𝑁 with dim𝑁 = dim𝐴 and 𝐴 is a fg generated graded free 𝑁 -module. (Nother
Normalization )(Free module over polynomial subalgebra)

Proof. Refer Eisenbud.

Theorem 5.27 (Auslander-Buchsbaum). Suppose a finitely generated graded 𝐴-module 𝑀
has a MFR

0 → 𝐹𝑡 → 𝐹𝑡−1 → ⋯ → 𝐹0 → 𝑀 → 0

It’s length 𝑡 is called the it projective dimension of 𝑀 . So projdim(𝑀) ∶= 𝑡

If 𝐴 = 𝑆, then
projdim(𝑀) = 𝑛 + 1

⏟⏞⏞⏞⏟⏞⏞⏞⏟

dim(𝑆)

−depth(𝑀) ≥ 𝑛 + 1 − dim(𝑀)

Proposition 5.28. For any fg graded 𝐴-module 𝑀

projdim𝑀 ≥ 𝑛 + 1 − dim𝑀

with equality iff 𝑀 is CM.

Proof. projdim𝑀 = 𝑛 + 1 − depth𝑀

dim𝑀 ≥ depth𝑀

Definition 5.29. 𝐴 = 𝑆/𝐼 is said to be Gorenstein algebra if it is CM and if the last free module
in a MFR of 𝐴 has rank one, i.e.,

0 → 𝑆(−𝑑) → 𝐹𝑡−1 → ⋯ → 𝐹1 → 𝑆 → 𝐴 → 0

with 𝑡 = 𝑛 + 1 − depth𝐴.

Example 5.30. 1. The Koszul complex shows that any complete intersection is Goren-
stein.
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2. If Δ is a triangualtion of sphere then it’s Stanley-Reisner ring is Gorenstein.

For example

4

3
2

1
0

the above figure has Stanley-reisner ring 𝐴 = 𝑆/𝐼 where
𝐼 = ⟨𝑥0𝑥2, 𝑥0𝑥3, 𝑥1𝑥3, 𝑥1𝑥4, 𝑥2𝑥4⟩. The MFR of 𝐴 has the for

0 → 𝑆(−5) → 𝑆(−3)
5
→ 𝑆(−2)

5
→ 𝑆 → 𝐴 → 0

⎡

⎢

⎢

⎢

⎢

⎣

𝑥3 𝑥4 0 0 0

−𝑥2 ⋮ −𝑧1 0 ⋮

−𝑥0 𝑥4 𝑥2

−𝑥0 ⋮ −𝑥3 −𝑥1

⎤

⎥

⎥

⎥

⎥

⎦

5.31. Notation char(𝐾) = 0 and 𝑆 = 𝑘[𝑥0,… , 𝑥𝑛], 𝑅 = 𝑘[𝑦0,… , 𝑦𝑛]

Definition 5.32.

𝛽 ∶ 𝑆 × 𝑅 → 𝑅

(𝑓 , 𝐺) ↦ 𝜕𝑓 ⋅ 𝐺( differentiation)

induced by 𝜕𝑥𝑎𝐺 =
𝜕
𝑎
0

𝜕𝑦
𝑎
0

0

⋯
𝜕
𝑎𝑛

𝜕𝑦
𝑎𝑛

𝑛

and extend 𝑘-linearly

Lemma 5.33. 1. 𝛽 is a perfect pairing, i.e. it is 𝑘 bilinear and 𝛽(𝑓 , 𝐺) = 0∀𝐺 ∈ 𝑅 ⟹ 𝑓 =

0 and 𝛽(𝑓 , 𝐺) = 0, ∀𝑓 ∈ 𝑆 ⟹ 𝐺 = 0.

2. For an 𝑖, 𝑗 ∈ ℤ 𝛽 induces maps

[𝑆]𝑗 × [𝑅]𝑗 → [𝑅]𝑖−𝑗

In particular for any 𝑗 ∈ ℤ,
[𝑆]𝑗 × [𝑅]𝑗 → 𝑘

is also a perfect pairing.

Proof. Bilinearity is clear. Now for any monomials 𝑥𝑎 ∈ 𝑆, 𝑦
𝑏
∈ 𝑅 of deg 𝑗 then 𝜕𝑥𝑎𝑌 𝑏 ≠ 0 iff

𝑎 = 𝑏.

The map 𝛽 turns 𝑅 into an 𝑆 module: 𝑓 ⋅ 𝑔 ∶= 𝜕𝑓𝐺.

Definition 5.34. 1. For any homogeneous ideal 𝐼 ⊂ 𝑆 define Macaulay’s inverse system
𝐼
⟂ as

𝐼
⟂
∶=

{

𝐺 ∈ 𝑅|𝜕𝑓𝐺 = 0∀𝑓 ∈ 𝐼

}

a graded 𝑆-submodule of 𝑅.

2. For any graded 𝑆-submodule 𝑀 of 𝑅 define it’s annihilator as

Ann(𝑀) ∶=

{

𝑓 ∈ 𝑆|𝜕𝑓𝐺 = 0 for any 𝐺 ∈ 𝑀

}

Note: [𝑆]𝑗[𝑅]𝑖 ⊂ [𝑅]𝑖−𝑗 ( not exactly what we mean by graded module. Can think of it
as [𝑆]−𝑗 but thats messy. So we bare with this little inconvenience.)

𝑀 ⊂ 𝑅 a graded 𝑆-submodule (in the above sense). Define Ann(𝑀) in the same way.
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Example 5.35. 1. 𝐺 = 𝑦
2

0
𝑦
3

1
, Ann(𝐺) = ⟨𝑥

3

0
, 𝑥

4

1
⟩

2. 𝐼 = ⟨𝑥
2

0
, 𝑥

3

1
⟩. Thn 𝐼⟂ has a 𝑘-basis 𝑦0𝑦21 , 𝑦0𝑦1, 𝑦21 , 𝑦1, 𝑦1, 1.

Note:dim𝐴/𝐼 = dim 𝑆/

√

𝐼 = dim 𝑘 = 0. To think about dim 0 in terms of Hilbert
dimension is dim 𝑆/𝐼 = 0 ⟺ [𝑆/𝐼 ]𝑗 = 0 when 𝑗 >> 0 iff dim𝑘(𝑆/𝐼 ) < ∞. 𝐻𝑆/𝐼 (𝑧) =

∑
𝑗≥0

dim[; 𝑆/𝐼 ]𝑗 = 𝜌/(1 − 𝑧)
𝑑 .

3. 𝐽 = ⟨𝑥0, 𝑥1⟩ ⊂ 𝑘[𝑥0, 𝑥1, 𝑥2]. 𝐽 ⟂ has a 𝑘-basis
{

𝑦
𝑗

2
∶ 𝑗 ∈ ℕ0

}

. It is not a fg 𝑆 module
dim 𝑆/𝐼 = 1.

Theorem 5.36. There are bijections

{homogeneous ideals of S} ↔ { Graded 𝑆 submodules of 𝑅}
𝐼 ↦ 𝐼

⟂

Ann(𝑀) ↤ 𝑀

𝐼
⟂ is a fg graded 𝑆 -module ⟺ dim 𝑆/𝐼 = 0.

Proof. The definition implies 𝐼 ⊂ Ann(𝐼
⟂
) and 𝑀 ⊂ Ann(𝑀)

⟂. The equality follows by com-
paring dimensions.

Proposition 5.37. For any homogeneous ideal 𝐼 ⊂ 𝑆 one has

dim𝑘[𝐼
⟂
]𝑗 = dim𝑘[𝑆/𝐼 ]𝑗

for any 𝑗 ∈ ℤ.

Proof. Note that [𝐼⟂]𝑗 =
{

𝐺 ∈ [𝑅]𝑗 ∶ 𝜕𝑓𝐺 = 0, ∀𝑓 ∈ [𝐼 ]𝑗

}

. Because if 𝑓 ∈ [𝐼 ]𝑗−1, then 𝜕𝑓𝐺 = 0

iff 𝜕𝑙𝜕𝑓𝐺 = 𝜕𝑙𝑓𝐺

⏟⏞⏞⏟⏞⏞⏟

∈[𝐼 ]𝑗

= 0 for any 𝑙 ∈ [𝑆]1.So it is enough to test 𝐺 against polynomials of deg 𝑗 in 𝐼 .

Since [𝑆]𝑗 × [𝑅]𝑗 → 𝑘 is also a perfect pairing, it follows that dim𝑘[𝐼 ]𝑗 = dim[𝑆]𝑗 − dim[𝐼 ]𝑗 =

dim𝑘[𝑆/𝐼 ]𝑗 .

5.38. Properties of ythe bijection in 5.36

1. For any two graded 𝑆-submodules𝑀,𝑁 of 𝑅 one has 𝐴𝑛𝑛(𝑀 +𝑁 ) = 𝐴𝑛𝑛(𝑀) ∩𝐴𝑛𝑛(𝑁 )

2. For any homogeneous ideals 𝐼 , 𝐽 ⊂ 𝑆, (𝐼 ∩ 𝐽 )⟂ = 𝐼
⟂
+ 𝐽

⟂.

Definition 5.39. An ideal 𝐼 ⊂ 𝑆 is reducible if 𝐼 = 𝑎 ∩ 𝑏 with 𝐼 ⊊ 𝑎, 𝐼 ⊊ 𝑏.

Remark 5.40. 1. 𝐼 = ⟨𝑥
2
, 𝑦

2
⟩ is irreducible (𝐼 = 𝐴𝑛𝑛(𝑥𝑦)).

2. Every irreducible ideal is primary but not true conversely.

⟨𝑥
2
, 𝑥𝑦, 𝑦

2

⟩ = ⟨𝑥
2
, 𝑦⟩ ∩ ⟨𝑥, 𝑦

2

⟩

is not irreducible but primary.

Corollary 5.41. If 𝐼 ⊂ 𝑆 homogeneous with dim 𝑆/𝐼 = 0 the 𝐼 is irreducible iff 𝐼⟂ is principal.
𝐼 = 𝐴𝑛𝑛(𝐺) for some 𝐺 ∈ 𝑅.

24



Proof. Use the properties of the bijection and 𝐼 = 𝐴𝑛𝑛(𝐼
⟂
)

Theorem 5.42. Let 𝐼 ⊂ 𝑆 be a homogeneous ideal such that ∼ 𝑆/𝐼 = 0. TFAE

1. 𝑆/𝐼 is gorenstein.

2. 𝐼 is irreducible.

3. 𝐼 = 𝐴𝑛𝑛(𝐺) for some 𝐺 ∈ 𝑅.

4. 𝐼⟂ is principal.

Proof. Since 𝛽 is perfect pairing it follows that

hom𝑘(𝑆/𝐼 , 𝑘) ≅ 𝐼
⟂
(up to adjustment of grading)

It foolows for the MFR of 𝑆/𝐼

0 → 𝐹𝑛+1 → ⋯ 𝐹1 → 𝑆 → 𝑆/𝐼 → 0

𝐹𝑛+1 has rank 1 iff 𝐼⟂ is principal. rank 𝐹𝑛+1 is
number of
min gen-
erators of 𝐼⟂.

Proposition 5.43. If 𝑆/𝐼 is gorenstein of dim 0 then it’s Hilbert function is symmetric (or
palindromic) in teh sense, ∃𝑒 ∈ ℕ such that

dim𝑘[𝑆/𝐼 ]𝑗 = dim𝑘[𝑆/𝐼 ]𝑒−𝑗

for any 𝑗 .

Proof. By the previous theorem 𝐼 = 𝐴𝑛𝑛(𝐺) for soem 𝐺 ∈ 𝑅. Let 𝑒 = deg𝐺.

Cpmsoder the map induced by 𝛽

[𝑆]𝑗

[

Ð→
𝜙

𝑅]𝑒−𝑗

𝑓 ↦ 𝜕𝑓 ◦ 𝐺

We get

dim𝑘[𝐼
⟂
]𝑒−𝑗 = dim𝑘

{

𝜕𝑓𝐺|𝑓 ∈ [𝑆]𝑗

}

= dim𝑘[𝑆]𝑗 − dim𝑘[ker𝜙

⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝐼

]𝑗

= dim𝑘[𝑆/𝐼 ]𝑗

By 5.37 dim𝑘[𝐼
⟂
]𝑒−𝑗 = dim𝑘[𝑆/𝐼 ]𝑒−𝑗

Example 5.44. 𝐼 = ⟨𝑥
2
, 𝑦

2
, 𝑧

2
⟩ ⊂ 𝑆 = 𝑘[𝑥, 𝑦, 𝑧]. 𝑆/𝐼 is gorenstein.

𝑗 0 1 2 3 4

dim𝑘[𝑆/𝐼 ]𝑗 1 3 3 1 0

𝑥𝑦𝑧

25



Lemma 5.45. If 𝑋 ⊂ ℙ
𝑛 is a finite set of pints and ℎ𝑋 (𝑗) = 𝑘, then there is a subset 𝑌 ⊂ 𝑋 of

𝑘 points with ℎ𝑌 (𝑗) = 𝑘 = ℎ𝑋 (𝑗)

Corollary 5.46. Let 𝑋 ⊂ ℙ
𝑛

𝑘
be a fintie set of pioonts where 𝑘 is infinite.

1. There is some 𝑒 ∈ ℕ0 such that

ℎ𝑋 (0) < ⋯ < ℎ𝑋 (𝑒 − 1) < ℎ𝑋 (𝑒) = ℎ𝑋 (𝑗) = |𝑋 |

for an 𝑗 ≥ 𝑒.

2. If 𝑋 is gorenstein, then 𝐻𝑋 (𝑒 − 1) = |𝑋 | − 1.

Proof. Since depth(𝑆/𝐼𝑋 ) > 0 (Ideal of scheme saturated ⟹ depth> 0). So𝐴 = 𝑆/𝐼𝑋 contains
a nonzero divisor of positive degree. As 𝐾 is infinite there exists a nonzerodivisor of degree
1, say 𝑙

0 → 𝐴(−1)

𝑙

Ð→ 𝐴 → 𝐴/𝑙𝐴 → 0

𝑎 ↦ 𝑎𝑙

is exact and so
ℎ𝐴/𝑙𝐴(𝑗) = ℎ𝐴(𝑗) − ℎ𝐴(𝑗 − 1)

and
dim𝐴/𝑙𝐴 = dim𝐴 − 1 = 0 finite set of

points geom
dim =0 so
Krull dim =1

𝐻𝐴/𝑙𝐴(𝑧) is a polynomial. Denote it by 𝑒 it’s degree. Now first statement follows. By 5.43 we
know

1 = ℎ𝐴/𝑙𝐴(0) = ℎ𝑙/𝑙𝐴(𝑒)

which implies the second statement.

Example 5.47. If 𝐴/𝑙𝐴 has Hilbert function

deg 0 1 2 3 4 5

dim 1 3 5 3 1 0

then 𝐴 has Hilbert function 1, 4, 9, 12, 13, 13

Theorem 5.48 (Davis, Geramita, Orrechia, 1985). For a fintie set of points 𝑋 ⊂ ¶
𝑛, TFAE

1. 𝑋 is Gorenstein

2. There is some 𝑐 ∈ |𝑋 |− ℎ𝑋 (𝑒 − 𝑗) = ℎ𝑋 (𝑗) for 0 ≤ 𝑗 ≤ 𝑒/2 and for any subset 𝑌 ⊂ 𝑋 with
|𝑌 | = |𝑋 | − 1 one has ℎ𝑌 (𝑒 − 1) = |𝑋 | − 1
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6 Waring Rank

𝑆 = 𝑘[𝑥0,… , 𝑥𝑛] char(𝐾) = 0. For any 𝑑 ∈ ℕ, the 𝑘 vector space of [𝑆]𝑑 has a 𝑘 basis of (𝑛+𝑑
𝑑
)

of powers of linear forms 𝑙𝑑
𝑖
, 𝑙𝑖 ∈ [𝑆]2, 𝑖 ∈ [(

𝑛+𝑑

𝑑
)]

Hence for any 𝑓 ∈ [𝑆]𝑑 can be written as

𝑓 =

(
𝑛+𝑑

𝑑
)

∑

𝑖=1

𝜆𝑖𝑙
𝑑

𝑖
𝑙𝑖 ∈ 𝑘

If 𝐾 is algebraically closed using 𝜆𝑖 = 𝜇
𝑑

𝑖
one gets

𝑓 =

(
𝑛+𝑑

𝑑
)

∑

𝑖=1

(𝜇𝑖𝑙𝑖)
𝑑

Definition 6.1. Given 𝑓 ∈ [𝑆]𝑑 any expression of the form

𝑓 =

𝑟

∑

𝑖=1

𝑙
𝑑

𝑖

where 𝑙𝑖 ∈ [𝑆]1 is called a Waring decomposition of 𝑓 .

The least 𝑟 such that 𝑓 has a Waring decomposition with 𝑟 summands is called the waring
rank denoted wr(𝑓 ) ∶= wr𝑘(𝑓 )

Example 6.2. 𝑥𝑦 =
1

4
[(𝑥 + 𝑦)

2
− (𝑥 − 𝑦)

2
] so wrℝ(𝑥𝑦) = 2.

Determining the waring rank of a general polynomial is the problem of interest.

Proposition 6.3. If 𝐾 is algebraically closed then for any 𝑞 ∈ [𝑆]2 one has

≀(𝑞) = rank(𝑄)

where 𝑄 ∈ 𝐾
(𝑛+1)×(𝑛+1) is symmetric with 𝑞 = [𝑥0 ⋯ 𝑥𝑛]𝑄

⎡

⎢

⎢

⎣

𝑥0

⋮

𝑥𝑛

⎤

⎥

⎥

⎦

Proof. Since 𝑄 is symmetric ∃𝑇 invertible ∈ 𝐾 (𝑛+1)×(𝑛+1) such that

𝑇
𝑡
𝑄𝑇 =

⎡

⎢

⎢

⎣

𝑎1 0

⋱

0 𝑎𝑟

⎤

⎥

⎥

⎦

Hence 𝑥 𝑡(𝑇 𝑡𝑄𝑇 )𝑥 = ∑ 𝑎𝑖𝑥
2

𝑖
. 𝑞 = [𝑙0 ⋯ 𝑙𝑛]𝑄

⎡

⎢

⎢

⎣

𝑙0

⋮

𝑙𝑛

⎤

⎥

⎥

⎦

= 𝑞(𝑙0,… , 𝑙𝑛)

Changing basis 𝑙𝑖 = 𝑦𝑖 , 𝑥𝑖 is a linear form ̃
𝑙𝑖 in 𝑦0,… , 𝑦𝑛 we get 𝑞(𝑦0,… , 𝑦𝑛) = ∑ 𝑎0

̃
𝑙
2

𝑖
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Theorem 6.4. For any sufficiently general 𝑓 ∈ [𝑠]𝑑 with 𝑑 ⩾ 3, one has

war(𝑓 ) =

⎡

⎢

⎢

⎢

⎢

⎣

(

𝑛 + 𝑑

𝑛 )

𝑛 + 1

⎤

⎥

⎥

⎥

⎥

⎦

except if 𝑑 = 3 and 𝑛 = 4 or 𝑑 = 4 and 2 ≤ 𝑛 ≤ 4

Remark 6.5. This is a consequence of a result about Hilbert function Set 𝐼 ∶= ∩
𝑟

𝑗=1
𝐼
2

𝑝𝑗
when

𝑃1, .., 𝑃𝑟 ∈ ℙ
𝑛 are general points. Then ℎ𝐴(𝑗) = min

{

(𝑛 + 1)𝑟 ,
(

𝑛 + 𝑗

𝑟 )

}

for any 𝑗 except

𝑗 = 3, 𝑛 = 4 and 𝑛 = 9. or 𝑗 = 4, 2 ≤ 𝑛 ≤ 4 and 𝑟 =
(

𝑛 + 2

4 )
− 1

Recall for 𝑅 = 𝑘 [𝑦0,… , 𝑥𝑛] we have perfect pairing

𝑆 × 𝑅 ⟶ 𝑅

(𝑓 , 𝐺) ↦ 𝜕𝑓 ◦ 𝐺

𝐼 ⊂ 𝑆 ↦ 𝐼
⟂
⊂ 𝑅

Ann(𝑀) ↤ 𝑀

Every linear form 𝑙 = 𝑎0𝑦0 +⋯ .+ 𝑎𝑛𝑦𝑛 ∈ 𝑅 corresponds to a point and 𝑃 = (𝑎0 ∶ … ∶ 𝑎𝑛) ∈ ℙ
𝑛.

Lemma 6.6. For any 𝑓 ∈ [𝑆]𝑗 𝑙 = 𝑠0𝑦0 +⋯ ⋅ 𝑎𝑛𝑦𝑛 and 𝑑 ∈ ℕ one has

𝜕𝑓 ⋅ 𝑙
𝑑
=

𝑑!

(𝑑 − 𝑗)!

𝑓 (𝑎0,… , 𝑎𝑛) 𝑙
𝑑−𝑗

Proof. It suffices to check this for 𝑓 = 𝑥
𝑏
= 𝑥

𝑏

0
⋯ 𝑥

𝑏𝑛

𝑛
∈ [𝑆]𝑗 if 𝑑 ⩾ |𝑏| where 𝑙𝑑−𝑗 ∶= 0 if

𝑑 < 𝑗 .

Lemma 6.7 (Apolarity Lemma ). Let 𝑋 ∈ ℙ
𝑛 be a set of 𝑠 distinct points corresponding to

linear forms 𝑙1,… , 𝑙𝑠. Cot 𝑓 ∈ [𝑅]𝑑 Then there are 𝑐1 … 𝑐𝑠 ∈ 𝐾 st.

𝑓 =

∞

∑

𝑖=1

𝑐𝑖𝑙
𝑑

𝑖
iff 𝐼𝑥 ⊂ Ann(𝑓 )

Proof. ⟹ To simplify notation, for 𝑃 = (𝑎0 ∶ … ∶ 𝑎𝑛) write 𝑓 (𝑝) instead of 𝑓 (𝑎0,… , 𝑎𝑛). By
definition 𝑔 ∈ Ann(𝑓 ) iff 0 = 𝜕𝑔 ⋯ 𝑓 = 0

𝑔 ∈ 𝐼𝑋 satisfies 𝑔(𝑃𝑖) = 0 for 𝑖 ∈ [𝑠] This shows 𝐼𝑋 ⊂ Ann(𝑓 ).

⟸ 𝐼𝑥 ⊆ Ann(𝑓 ) ⇔ 𝐼
⟂

𝑋
⊃ Ann(𝑓 )

⟂
=⇔ 𝐼

⟂

𝑋
∋ 𝑓

For any point 𝑝 = (𝑎0 ⋯ 𝑎𝑛) ∈ ℙ
𝑛, one has

𝐼
⟂

𝑝
=

{

𝑐𝑙
𝑗

𝑝
∶ 𝑐 ∈ 𝑘 𝑗 ∈ ℕ0

}

with 𝑙𝑝 = 𝑐0𝑥0 +⋯ 𝑎𝑛𝑥𝑛

( It is ETS for 𝑝 = (1 ∶ 0⋯ ∶ 0). Then 𝐼𝑝 = ⟨𝑥1,… , 𝑥𝑛⟩ Thus 𝑓 ∈ 𝐼
⟂

𝑝
⟺

𝜕𝑓

𝜕𝑥𝑖

= 0 ⟺ 𝑓 = 𝑐𝑥
𝑗

0

for 𝑐 ∈ 𝑘 𝑗 ∈ ℕ0.)

𝐼𝑥 = 𝐼𝑝1
∩…∩𝐼𝑝𝑠𝐼

⟂

𝑥
= 𝐼

⟂

𝑝1
+…+𝐼

⟂

𝑃𝑠
So [𝐼

⟂

𝑥 ]
𝑑

= ⟨𝑙
𝑑

1⟩+⋯+⟨𝑙
𝑑

𝑠⟩ Hence 𝑓 = ∑
𝑠

𝑖=1
𝑐𝑖𝑙

𝑑

𝑖
with 𝑐𝑖 ∈ 𝑘
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Theorem 6.8 (Catkin, Catalisamo, Geramita,2012). If 𝑘 is algebraically closed, 1 ≤ 𝑎0 ≤ 𝑎1 ≤

… ≤ 𝑎𝑛, then

wr(𝑦
𝑎0

0
𝑦
𝑎1…𝑦𝑛

1
𝑎𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐺

) =

1

(𝑎0 + 1)

𝑛

∏

𝑖=0

(𝑎𝑖 + 1)

Proof. If 𝑛 = 0, then wr(𝑎
𝑥0

0
) = 1

Let 𝑛 ≥ 1. Since Ann(𝐺) = ⟨𝑥
𝑎0+1

0
, 𝑥

𝑎1+1

1
,… , 𝑥

𝑎𝑛+1

𝑛 ⟩ and 𝑎1 ≤ 𝑎1 ≤ … 𝑎𝑚, we get

Ann(𝐺) ⊃ 𝐽 = ⟨𝑥
𝑎1+1

0
− 𝑥

𝑎+1

2
,… 𝑥

𝑎𝑛+1

0
− 𝑥

𝑎+1

𝑛 ⟩ (1)

𝐽 is generated by a regular sequence, so dim 𝑆/𝐽 = 1 and deg 𝐽 = (𝑎1 + 1)… (𝑎𝑛 + 1) = 𝑟 . Let
𝜂𝑖 ∈ 𝑘 be a primitive 𝑎𝑖+1 root of unity and consider𝑋 ∶=

{

(1 ∶ 𝜂
𝑘1

1
∶ ⋯ ∶ 𝜂

𝑘𝑛

𝑛
) ∣ 0 ≤ 𝑘𝑖 ≤ 𝑎𝑖∀𝑖

}

.
Then |𝑋 | = (𝑎1 + 1)… (𝑎𝑚 + 1) = 𝑟 and 𝑋 ⊂ 𝑍(𝐽 ). Hence 𝑋 = 𝑍(𝐽 ), 𝐼𝑋 = 𝐽 ⟹ wr(𝐺) ≤ 𝑟 by
Apolarity lemma.

Conversely by apolarity there is a saturated ideal 𝐼 ⊂ Ann(𝐺) defining a set Γ ⊂ ℙ
𝑛 of 𝑠 points.

So 𝐼 = ∩𝑝∈Γ(𝐼𝑝 ∶ 𝑥0) = ∩𝑝∈Γ′𝐼𝑝 where Γ′ ⊂ Γ is the subset of points not lying in the hyperplane
defined by 𝑋0 = 𝑍(𝑥0).

Set 𝑠′ = |Γ
′
| ≤ |Γ| = 𝑠. So it suffices to show 𝑠

′
≥ 𝑟 . Since 𝑎0 ≥ 1, we have 𝑥0 ∉ Ann(𝐺)(1

calculated explicitly) and thus 𝑥0 ∉ 𝐼 So 𝑠′ ≥ 𝑞, i.e., 𝐼 ≠ 𝑆, so 𝐼 ∶ 𝑥0 = 𝐼 . Hence for every
𝑗 >> 0, we get

𝑠
′
= ℎ 𝑆

𝐼

(𝑗) =

𝑗

∑

𝑘=0

ℎ 𝑆

𝐼+𝑥
0
𝑆

(𝑘)

Degree of
regular
system of
parame-
ters=product
of degrees

Moreover I ⊆ Ann(𝐺) implies

𝐼 = 𝐼 ∶ 𝑥0 ⊆ Ann(𝐺) ∶ 𝑥0

= ⟨𝑥
𝑎0

0
; 𝑥

𝑎1+1

1
,⋯ , 𝑥

𝑎𝑛+1

𝑛 ⟩

so
𝐼 + 𝑥0𝑆 = ⟨𝑥0, 𝑥

𝑎1+1

1
,… , 𝑥

𝑎𝑛+1

𝑛 ⟩ = 𝐽 ↝ regular system of parameters

Note, dim 𝑆/𝐽 = 0 and deg 𝐽 = (𝑎1 + 1)… (𝑎𝑛 + 1) = 𝑟

It follows that

𝑠
′
=

𝑗

∑

𝑟=0

ℎ 𝑆

𝐼+𝑥
0
𝑆

(𝑘) ⩾

𝑗

∑

𝑘=0

ℎ
𝑠/𝐽
(𝑘)

= deg 𝐽 = 𝑟

⇒ wr(𝑎) ⩾ 𝑠
′
⩾ 𝑟
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7 Complexity of Matrix multiplication

Question. How many multiplications in 𝐾 does one need to compute 𝐴 ⋅ 𝐵 for 𝐴, 𝐵 ∈ 𝐾
𝑛×𝑛

Example 7.1 (Stransen, 1989). 𝑛 = 1. Let 𝐶 = (𝑐𝑖𝑗). Set

𝐼 = (𝑎11 + 𝑎22)(𝑏11 + 𝑏22)

𝐼 𝐼 = (𝑎21 + 𝑎22)𝑏11

𝐼 𝐼 𝐼 = 𝑎11 (𝑏21 + 𝑏22)

𝐼𝑉 = 𝑎22 (−𝑏11 + 𝑏21)

𝑉 = (𝑎11 + 𝑎22) (𝑏22)

𝑉 𝐼 = (−𝑎12 + 𝑎22) (𝑏12 + 𝑏12)

𝑉 𝐼 𝐼 = (𝑎12 − 𝑎22) (𝑏21 + 𝑏22)

𝑐11 = 𝐼 + 𝐼𝑉 − 𝑉 + 𝑉 𝐼 𝐼

𝑐21 = 𝐼 𝐼 + 𝐼𝑉

𝑐12 = 𝐼 𝐼 + 𝑉

𝑐22 = 𝐼 − 𝐼 𝐼 + 𝐼 𝐼 𝐼 + 𝑉 𝐼

Remark 7.2. This is optimal. (Uimogradov, 1971)

Definition 7.3. The exponenet of matrix multiplication

𝜔 = inf {𝜏 ∈ ℝ ∶ computing the product of two 𝑛 × 𝑛 matrices takes 𝑂(𝑛𝜏) multiplications}

Theorem 7.4 (Strassen, 1969). 𝜔 ≤ log
2
7 ≈ 2.81

Current record: 𝜔 < 2.374 (Gall, 2014)

7.5. Conjecture 𝜔 = 2.

If 𝑈 , 𝑉 ,𝑊 are 𝑘-vector spaces with bases {𝑢𝑖} ,
{

𝑣𝑗

}

, {𝑤𝑘}, then the tensor product 𝑢 ⊗ 𝑣 ⊗ 𝑤

is a 𝑘 vector space with basis
{

𝑢𝑖 ⊗ 𝑣𝑗 ⊗ 𝑤𝑘

}

. . .

The rank of a tensor 𝑇 ∈ 𝑈 ⊗ 𝑉 ⊗ 𝑊 is

rk(𝑇 ) ∶= min

{

𝑟 ∶ 𝑇 =

𝑟

∑

𝐼=1

(𝑢𝑖 ⊗ 𝑣𝑗 ⊗ 𝑤𝑘)𝐼

}

for any 𝑢𝑖, 𝑣𝑗 , 𝑤𝑘 ∈ 𝑈 , 𝑉 ,𝑊 respectively. hom(𝑈 ⊗

𝑉 ,𝑊 ) ≅

𝑈 ⊗ 𝑉 ⊗𝑊 for
fin dim spaces.

Under this isomorphism the map

𝑈 ⊗ 𝑉 → 𝑊

𝐴 ⊗ 𝐵 ↦ 𝐴 ⋅ 𝐵

𝑀𝑛 = ∑
𝑟

𝑖,𝑗 ,𝑘=1
𝐸𝑖𝑗 ⊗ 𝐸𝑗𝑘 ⊗ 𝐸𝑘𝑖 where 𝐸𝑖𝑗 ∈ 𝐾 𝑛×𝑛 has a 1 in position (𝑖, 𝑗) and all other entries 0.

Theorem 7.6 (Strassen, 1983). 𝜔 = inf {𝜏 ∈ ℝ ∶ rank(𝑀𝑛) = 𝑂(𝑛
𝜏
)}

The symmetrization of 𝑀𝑛 gives a symmetric tensor corresponding to the polynomial

𝑓𝑛 = trace(𝑋
3

𝑛×𝑛
)
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where 𝑋 = ( 𝑥𝑖,𝑗
⏟⏟⏟

variable

)𝑖,𝑗 ∈ [𝑛]

dim 𝑣 = 𝑛

𝑣1 ⊗ 𝑣2 ↝𝑣1 ⊗ 𝑣2 + 𝑣1 ⊕ 𝑣3 +⋯ + 𝑣𝑛−1 ⊕ 𝑣𝑛

↕

1𝑥1𝑥2

=

𝑛

∑

𝑖,𝑗 ,𝑘=1

𝑥𝑖𝑗𝑥𝑗𝑘𝑥𝑘𝑖 homo. of deg 3

Theorem7.7 (Chiantini, Ikenmeyer, Landsberg, Ottarini, 2018). 𝜔 = inf {𝜏 ∈ ℝ ∶ wr(𝑓𝑛) = 𝑂(𝑛
𝜏
)}
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