MA 765: Topics in Non-linear Algebra

Taught by Dr. Uwe Nagel

Notes by Narendran

University of Kentucky Fall 2023

1	Gröbner Basis	1
2	Hilbert Functions	5
3	Ideals and Schemes	13
	3.1 Affine case	13
	3.2 Projective Schemes	14
4	Bezout's theorem	16
5	Free Resolutions	17
6	Waring Rank	27
7	Complexity of Matrix multiplication	30

1 Gröbner Basis

Denote by \leq the coordinate wise partial order on \mathbb{N}_0^n . $(a_1, \ldots, a_n) \leq (b_1, \ldots, b_n)$ if $a_i \leq b_i$ for $i \in [n]$.

Divisibility is a partial order on monomials.

Theorem 1.1 (Dicksen's lemma). Every infinite subset of \mathbb{N}_0^n contains elements a, b with a < b.

Proof. The proof follows by induction. Let $\mathcal{M} \subset \mathbb{N}_0^n$ be an infinite subset. For any $i \in \mathbb{N}_0$ define \mathcal{M} ,

$$\mathcal{M}_i = \{a = (a_1, \dots, a_n) \in \mathbb{N}_0^{n-1} : (a, i) \in \mathcal{M}\}$$

If \mathcal{M}_i is finite, then look at $\bigcup_i \in \mathbb{N}_0$, which has finitely many and atleast one minimal element. Thus there is some $j \in \mathbb{N}$ such that $\bigcup_{i=0}^{j} \mathcal{M}_i$ with $a \in \mathcal{M}_i$ for some $i \leq j$. Hence (a, i) < (b, k).

Corollary 1.2. For any $\phi \neq \mathcal{M} \subset \mathbb{N}_0^n$ the set of minimal elements wrt < is nonempty and finite.

1.3. Monomial order on \mathbb{N}_0^n is a relation \prec such that

- 1. If $a \neq b$ then $\prec b$ or $b \prec a$.
- 2. If $A \prec b$ and $b \prec c$ then $a \prec c$.
- 3. $(0, \dots, 0) \prec a$ for any $a \in \mathbb{N}_0^n$.
- 4. $a \prec b$ then $a + c \prec b + c$ for any $c \in \mathbb{N}_0^n$.

First two conditions together imply that \prec is a total order.

- **Remark 1.4.** 1. If a < b, then $a \prec b$, i.e., any monomial order refines coordinate wise partial order.
 - 2. Any monomial order on \mathbb{N}_0^n gives total order on monomials in $k[X_n]$

Example 1.5. Lexicographic order: Left most non zero entry of a - b is positive the $a >_{lex} b$.

degree lex order if either |a| > |b| or |a| = |b| and right most entry of a - b is negative.

degree reverse lex order, same as above but right most entry of a - b is negative.

Proposition 1.6. For any monomial order < on \mathbb{N}_0^n with $\phi \neq \mathcal{M} \subset \mathbb{N}_0^n$ has a unique minimal element.

Proof. Dicksen's lemma gives that \mathcal{M} has a finite nom empty set of minmal elements wrt coordinate wise order. The minmal elet of the wrt < is the desired elemnt.

- **1.7.** Fix a monomial order < on $k[X_n]$
 - 1. The initial monomial $\operatorname{im}_{<}(F)$ of $f = \sum c_a x^a$ is the largest monomial wrt < appearing in f with non zero coefficients.
 - 2. The leading term $lt_{<}(f) := c_a x^a$ with $x^a = im(f)$

3. The initial ideal of an ideal *I* is $im(I) = (im(f) : f \in I)$.

If *G* is a generating set for an ideal *I* then $(im(g) : g \in G) \subset im(I)$ and this inclusion can be strict.

Proposition 1.8. Let \langle be a monomial order on $k[X_n]$. Every ideal I has a finite subset \mathcal{G} such that $\operatorname{im}(I) = \langle \operatorname{im}(g) : g \in \mathcal{G} \rangle$.

Any such \mathcal{G} is called a Gröbner Basis of *I* wrt <.

Proof. The set of monomials in im(I) has a finite and nonempty subset of minmal elements wrt divisibility, say m_1, \ldots, m_s . Thus $im(I) = \langle m_1, \ldots, m_s \rangle$. Every monomial in im(I) is the initial monomial of some $f \in I$. hence there exists $f_1 \ldots, f_s \in I$ with $im(f_i) = m_i$. Thus $\{f_i\}$ is a Gröbner basis.

Theorem 1.9. If \mathcal{G} is a Gröbner basis of *I*, then $I = \langle \mathcal{G} \rangle$

Note that Hilbert's basis theorem is a simple corollary of this.

Proof. We argue by contradiction. By 1.6, choose $f \in I - \langle G \rangle$ such that $\operatorname{im}(f)$ is minimal. Call $\operatorname{im}(f) = x^b$. $x^b \in \operatorname{im}(I) = \langle \operatorname{im}(g) : g \in G \rangle$. There exists $g \in G$ such that $\operatorname{im}(g)|x^b$, say $x^b = x^c \cdot \operatorname{im}(g)$. $\operatorname{im}(f = x^c \lg) \leq x^b = \operatorname{im}(f)$ where $\lg = \operatorname{lt}(f)/x^c \operatorname{lt}(g) \in k$. But $f = x^c \lg G \in I = \langle G \rangle$ which is a

 $\operatorname{im}(f = x^c \lambda g) < x^b = \operatorname{im}(f)$ where $\lambda = \operatorname{lt}(f)/x^c \operatorname{lt}(g) \in k$. But $f - x^c \lambda g \in I - \langle \mathcal{G} \rangle$, which is a contradiction to the minimality.

Lemma 1.10. Consider $f, g_1, ..., g_s \in k[X_n]$, with $g_i \neq 0$. Then for any minmal order <, there exists $q_1 ..., q_s, r \in k[X_n]$ such that

- 1. $f + \sum_{i=1}^{s} q_i g_i + r$
- 2. $\operatorname{im}(f) \ge \operatorname{im}(q_i g_i) \forall i$ (note that $\operatorname{im}(f) = \operatorname{im}(q_i g_i)$ for some *i*)
- 3. im(r) is not divisible by $im(g_i)$ for any *i*.

We say f reduces to r by $\{g_1, \ldots, g_s\}$.

1.11 Division Algorithm. Input: $f, g_1 \dots g_s$ Output: $q_1, \dots q_s, r$ satisfying the properties 1-3.

- 1. Set r = 0, p = gf, $q_1 = \dots = q_s = 0$
- 2. While $p \neq 0$ do :

If $im(g_i)$ divides im(p) for some $i \in [s]$, then set $q_i = q_i + \frac{lt(p)}{lt(g_i)}$ and $p_i = p - \frac{lt(p)}{lt(g_i)}g_i$ else set r = r + lt(p), p = p - lt(p)

3. Return $q_1, ..., q_s, r$

Example 1.12. Consider Lexicographic ordering with x > y and $f = x^2y + xy^2 + y^2$ and

$$g_{1} = xy - 1, g_{2} = y^{2} - 1.$$

$$p \qquad xy - 1 \qquad y^{2} - 1 \qquad r$$

$$x^{2}y + xy^{2} + y^{2} - x^{2}y + x \qquad x$$

$$xy^{2} + y^{2} + x - xy^{2} + y \qquad y$$

$$y^{2} + x + y - x \qquad x$$

$$y^{2} + y - y^{2} + 1 \qquad 1$$

$$y + 1 - y \qquad y$$

$$1 \qquad 1$$

Corollary 1.13. Buchberger's criteria Let \mathcal{G} be a finite subset of *I*. Then \mathcal{G} is a Gröbner basis of *I* iff each $f \in I$ can be reduced to 0 by \mathcal{G} .

Proof. If *f* reduces to *r* by \mathcal{G} , then $\operatorname{im}(g_i)$ does not divide $\operatorname{im}(r)$, for all *i*. Howevert $f - r \in \langle \mathcal{G} \rangle$ and $r \in I$ and \mathcal{G} is a Gröbner basis of *I*. So there exists some $g \in \mathcal{G}$ such that $\operatorname{im}(r)$ is divisible by $\operatorname{im}(g)$, which forces r = 0.

Conversely, we have $f = \sum q_i g_i$ with $g_i \in \mathcal{G}$ and $\operatorname{im}(q_i g_i) \leq \operatorname{im}(f)$. Hence equality for some *i* and so $\operatorname{im}(f) \in \langle \operatorname{im}(g) : g \in \mathcal{G} \rangle$.

Proposition 1.14. Let < be a monomial order. Then

- 1. Let *B* be the set of monomials in $k[X_n] im(I)$. Then $\overline{B} \subset k[X_n]/I$ is a k vsp basis.
- 2. If \mathcal{G} is a Gröbner basis of *I*, then the remainder of *f* by \mathcal{G} is unique and does not depnd on the choice of \mathcal{G} .
- *Proof.* 1. If $p = \sum \lambda_i m_i \in I$ with $m_i \in B$, then $\operatorname{im}(p) \in \operatorname{im}(I)$, but $\operatorname{im}(p) = \operatorname{im}(m_i) \notin I$. To show \overline{B} spans. $m \in k[X_n]$ such that $\overline{m} \notin \operatorname{span}(\overline{B})$.

Take min{*m*} = *m* where $m \notin B$. So we have $m \in im(I)$. There exists $f \in I$ such that im(f) = m. So any monomial in $f - lt(f) + I = f - \lambda m + I$ is in span (\overline{B}). So $\lambda m + I = p - f + I \in \text{span}(\overline{B})$. This leads to a contradiction

Definition 1.15. 1. For terms λx^a , μx^b ($\lambda, \mu \in k$) denote by

$$\gcd \left(\lambda x^{a}, \mu x^{b}
ight) = \gcd \left(x^{a}, x^{b}
ight)$$

 $\operatorname{lcm} \left(\lambda x^{a}, \mu x^{b}
ight) = \operatorname{lcm} \left(x^{a}, x^{b}
ight)$

2. For $0 \neq g$, $h \in k[x_n]$, their *s* -polynomial (wrt monomial order <)

$$S(g,h) := \frac{\operatorname{lt}(h)}{\operatorname{gcd}(\operatorname{lt}(h),\operatorname{lt}(g))}g = \frac{\operatorname{lt}(g)}{\operatorname{gcd}(\operatorname{lt}(h),\operatorname{lt}(g))}h.$$

1.16. Buchberger's Algorithm for computing Gröbner basis Input: $f_1, ..., f_s \in k[X_n]$ in monomial order.

Output: Gröbner basis \mathcal{G} of $I = \langle f_1, \dots, f_s \rangle$ wrt <.

- 1. Set $\eta = \langle f_1 \cdots, f_s \rangle$
- 2. Order the elements of \mathcal{G} as f_1, \ldots, f_t
- 3. For $1 \le i < j \le t$ do: Reduce $S(g_i, g_j)$ to r by g. If $r \ne 0$, then set $\mathcal{G} := \mathcal{G} \cup \{r\}$ and go to step 2.
- 4. Return G

Remark 1.17. The algorithm computes a Gröbner basis. It terminate vecause in case $r \neq 0$. $\operatorname{im}(r) \notin \langle \operatorname{im}(g_1), \cdots, \operatorname{im}(g_t) \rangle$.

1.18. Extension to submodules of finitely generated $k[X_n]$ module So $F = k[X_n]^r = \bigoplus_{i=1}^r k[X_n]e_i$.

Monomials in *G* are of the form $x^a e_i$ and terms are $\lambda x^a e_i$ with $\lambda \in k$. A monomial order on *F* is a total order on the monomials satisfying: If $x^a \neq 1$, then $m_1 < m_2 \implies m_1 < x^a, 1 < x^a m_2$, for monomials m_i in *F*.

Given a monomial order on the polynomial ring $k[X_n]$ and an order on $\{e_i\}$. We obtain a monomial ordering on *F* by ordering $\mathbb{N}_0^n \times [r]$ or $[r] \times \mathbb{N}_0^r$ lexicographically.

Dicksen's lemma can be extended to monomials in F. We also define im, lt with respect to < analogously. There is also a division algorithm.

- **Theorem 1.19.** 1. Every submodule *M* of *F* has finite Gröbner basis and the basis generates *M*.
 - 2. If *B* is the set of monomials in F im(M), then $\overline{B} \subset F/M$ form a *k* basis of F/M.

2 Hilbert Functions

Definition 2.1. Let $I \subset k[X_n]$ be a monomial ideal. The Hilbert function of $A = k[X_n]/I$ (or of *I*) is

$$h_A : \mathbb{N}_0 \to \mathbb{Z}$$

 $a \mapsto h_A(j) = \dim_k [A]_j$

where $[A]_j$ is k vector space of images of polynomials of degree j, from $k[X_n] \rightarrow A$.(So $h_A(j)$ =number of monomials in $[k[X_n]]_j - I$).

It's generating function is the Hilbert series

$$H_A(z) = \sum_{j \ge 0} h_A(j) z^j$$

Example 2.2. 1. For I = 0, we get $h_{k[X_n]}(j) = {n+j-1 \choose i}$ and so

$$H_{k[X_n]}(z) = \sum_{j\geq 0} {n+j-1 \choose n-1} z^j = rac{1}{(1-z)^n}$$

2. If $I = \langle x^a \rangle$, then let $e = \deg(x^a)$.

3.

$$h_{k[X_n]/I}(j) = \begin{cases} h_{k[X_n]}(j) & j < e \\ h_{k[X_n]}(j) - h_{k[X_n]}(j-e) & j \ge e \end{cases}$$

Hence

$$H_{k[X_n]/I} = rac{1-z^e}{(1-z)^n}$$

Theorem 2.3. For any proper monomial ideal *I* of $k[X_n]$, the Hilbert series of $A = k[X_n]/I$ is a rational function of the form

$$H_A(z) = rac{\kappa_A(z)}{(1-z)^d}$$

with $\kappa_A(z) \in \mathbb{Z}[z], \kappa_A(0) = 1, \kappa_A(1) \neq 0, d \in \mathbb{N}.$ (this expression is unique.)

The dimension of *A* is

 $\dim A := d$

and the multiplicity of A (or degree of I) is

$$\deg(I) = \mathcal{H}_A(1) > 0$$

There is a polynomial called Hilbert polynomial p_A of A such that $h_A(j) = p_A(j)$ if j >> 0. If $d = \dim A > 0$, then

$$p_A(z) = \frac{\deg(I)}{(d-1)!} z^{d-1} + \text{lower order terms}$$

= $h_0(A) \begin{pmatrix} z+d-1\\ d-1 \end{pmatrix} + h_1(A) \begin{pmatrix} z+d-2\\ d-2 \end{pmatrix} + \dots + h_{d-1}(A) \begin{pmatrix} z \\ 0 \end{pmatrix}$

where $h_0(A) = \deg(I)$ and $h_i(A)$ are integers. Note if $p_A(z) \neq 0$ polynomial, then deg $p_A = d - 1 = \dim A - 1$.

Example 2.4.

I = 0, we get dim $k[X_n] = n$ and the multiplicity of $k[X_n]$ is $1 = \deg I$.

 $I = \langle x^a \rangle$ with deg x = e, then dim $k[X_n]/I = n - 1$ and deg $(I) = \text{deg}(x^a)$.

Proof of 2.3. Inclusion exclusion principle: $|\bigcup_{i=1}^{s} X_i| = \sum_{\phi \neq T \subset [S]} (-1)^{|T|+1} |X_t|$ where $X_t = \bigcap_{i \in T} X_i$

Let $I = \langle m_1, ..., m_s \rangle = I$, where m_i are monomials. Denote by $X_i(j)$ set of degree j monomials in $\langle m_i \rangle \subset k[X_n]$. hence for $T \subset [s]$, $X_T(j) = \bigcap_{i \in T} X_i(j)$ is the set of deg j monomials that are divisible by $m_T = \text{lcm}(m_i)_{i \in T}$. Define $e_t := \text{deg } m_T$. So

$$|X_T(j)| = egin{cases} 0 & j < e_t \ {n-1+j-e_T \choose n-1} & j \ge e_T \end{cases}$$

Thus

$$\sum_{j\geq 0} |X_T(j)| z^j = \sum_{j\geq e_T} \binom{n-1+j-e_T}{n-1} z^j = \sum_{k\geq 0} \binom{n-1+k}{n-1} z^{k+e_T} = z^{e_T} \frac{1}{(1-z)^n}$$

Since

$$h_A(j) = \binom{n-1+j}{n-1} - \text{number of deg } j \text{ monomials in } I = \langle m_1 \dots, m_s \rangle$$
$$= \binom{n-1+j}{n-1} - |\bigcup_{i \in [j]} X_i|$$

We get

$$\begin{split} H_A(z) &= \sum_{j \ge 0} h_A(j) z^j = \sum_{j \ge 0} \binom{n-1+j}{n-1} z^j + \sum_{T \in [s]} (-1)^{|T|} \sum_{j \ge 0} |X_T(j)| z^j \\ &= \frac{1}{(1-z)^n} + \sum_{T \in [s]} (-1)^T \frac{z^{e_T}}{(1-z)^n} =: \frac{g(z)}{(1-z)^n} \end{split}$$

When $g(z) \in \mathbb{Z}[z]$, with g(0) = 1 writing $g(z) = (1 - z)^{\nu} \kappa_A(z)$ with $\kappa_A(z) \in \mathbb{Z}[z]$, suitable $\nu \in \mathbb{N}$ and $\kappa_A(1) \neq 0$, $\kappa_A(0) = 1$. Hence $H_A(z) = \frac{\kappa_A(z)}{(1-z)^d}$ where $d = n - \nu$. Write

$$\kappa_A(z) = \sum_{k=0}^{w} c_k z^k ext{ with } c_k \in \mathbb{Z}$$

$$\sum_{j\geq 0}h_A(j)z^j=ig(\sum_{k=0}^{w}c_kz^kig)ig(\sum_{l\geq 0}ig(igd(d-1+l)d-1ig)z^lig)$$

comparing coefficients in deg j >> 0, we get

$$h_{A}(j) = \sum_{k+l=j} c_{k} \binom{d-1+l}{d-1} = \sum_{k=0}^{w} c_{k} \underbrace{\binom{d-1+j-k}{d-1}}_{\substack{\text{polynomial in } j-k \\ \text{variables of deg } d-1}} = \underbrace{\left(\sum_{k=0}^{w} c_{k}\right) \binom{j}{d-1}}_{\substack{k=0 \\ K_{A}(1)}} + \text{lower order terms}$$
$$=: p_{A}(j) \text{ (Hilbert polynomial)}$$

If $h_A(j) = 0$ whenever j >> 0, then by definition $0 = d = \dim A$ and in this case p_A is the zero polynomial. Hence if d > 0, then $h_A(j) > 0$ if j >> 0 and so the leading coefficient of $p_A(z)$ must be positive, i.e., $\kappa_A(1) > 0$

Definition 2.5. A monomial order is called degree compatible if

$$\deg(x^a) > \deg(x^b) \implies x^a > x^b$$

for any two monomials.

2.6. For any ideal $I \subset k[X_n]$ and any $t \in \mathbb{Z}$, set

$$I_{\leq t} = \{f \in I : \deg f \leq t\}$$

It is a *k*-subspace of $k[X_n]$. Write Mon $(k[X_n])$ for the set of monomials in $k[X_n]$.

Lemma 2.7. Let < be a degree compatible monomial order. For any ideal $I \subset k[X_n] = S$, one has

$$\dim_k \frac{k[X_n]_{\leq t}}{I_{\leq t}} = \text{number of monomials in } \frac{k[X_n]_{\leq t}}{\text{im}_{<}(I)}$$
$$= |\operatorname{Mon}(k[X_n])_{\leq t} - \operatorname{im}_{<}(t) |$$

Proof. $B := Mon(k[X_n])_{\leq t} - im_{<}(I)$. We claim

$$ar{B} \subset rac{k[X_n]_{\leq t}}{I_{\leq t}}$$
 is a k - basis

 $\overline{\text{Mon}(k[X_n]) - \text{im}(I)}$ is a *k*-basis of $k[X_n] - \text{im}(I)$, by 1.14. \overline{B} spans remainder of any $F \in k[X_n]$ pon dividing by Gröbner basis of I wrt < satisfies deg $r \leq \text{deg } f$.

For $I \subset k[X_n]$, the affine Hilbert function of $A = k[X_n]/I$ is

$$h_A^a : \mathbb{N}_0 \longrightarrow \mathbb{Z}$$

 $j \mapsto h_A^a(j) = \dim_k \frac{k[X_n]_{\leq j}}{I_{\leq j}}$

Lemma 2.8. For any degree compatible monoial order < on *I*, one has

$$h_{\frac{k[X_n]}{im<(l)}}(j) = h_A^a(j) - h_A^1(j-1)$$

where $A = k[X_n]/I$.

Proof. By definition, we have

$$h_{\frac{k[X_n]}{im(I)}}(j) = |\operatorname{Mon}(k[X_n])_j - im(I)|$$

$$2.7 \implies h_A^a(j) = |\operatorname{Mon}(k[X_n])_{\leq j} - im(I)| \square$$

Remark 2.9. If $A \neq 0$, $h_A^a(0) = 1$. Then by 2.8 we have $h_A^a(j) = \sum_{k=0}^j h_{k[X_n]/\operatorname{im}(I)}(k)$. It follows that generating function of h_A^a and $h_{\frac{k[X_n]}{\operatorname{im}(I)}}$ have analogous properties

2.10. We define dimensin of *A*,

$$\dim \frac{k[X_n]}{I} := \dim_k \frac{k[X_n]}{\operatorname{im}(I)}$$

and the degree

$$\deg(I) = \deg(\operatorname{im}(I))$$

where < is a degree compatible monomial order.

2.11. Let G = (G, +) be an abelian group. A *G*-graded ring *R* is a family of subgroups $([R]_{a \in G}) \le (R, +)$ such that

- 1. $R = \bigoplus_{a \in G} [R]_a$ (as \mathbb{Z} -modules)
- 2. $[R]_a \cdot [R]_b \subset [R]_{a+b}$

The elements of $[R]_a$ are called homogeneous of degree *a*.

Example 2.12. Fine or \mathbb{Z} -grading of $k[X_n]$, where $G = \mathbb{Z}^n$

$$[S]_a = \begin{cases} 0 & \text{if some } a_i < 0\\ \{\lambda x^a : \lambda \in k\} \end{cases}$$

Definition 2.13. R = G-graded ring

- 1. *G*-graded *R*-module is an *R*-module *M* with a decomposition $([M]_a)_{a \in G}$ such that $M = \bigoplus_{a \in G} [M]_a$ and $[R]_a \cdot [M]_b \subset [M]_{a+b}$.
- 2. A G-graded or simply graded submoulle of such a graded M is a graded submodule $N \subset M$ such that

$$[N]_a \subset [M]_a$$

Lemma 2.14. For an arbitrary submodule N of a G graded R-module M the following are equivalent

- 1. N is a graded submodule
- 2. N has a generating set consisting of homogeneous elemnents
- 3. If $m = \sum_{a \in G} m_a$ with $m_a \in [M]_a$, then $m \in N$ iff each $m_a \in N$.
- 4. M/N is a *G*-graded *R*-module with grading $[M/N]_a := \frac{[M]_a + N}{N}$.

Proof.

Example 2.15. 1. *M* and *N* are *G*-graded, then so is $M \oplus N$ with grading $[M \oplus N]_a := [M]_a \oplus [N]_a$ (as *R* modules). So if *R* is *G* graded, then so is R^n .

- 2. $I \subset k[X_n]$ is a \mathbb{Z}^n graded submodule if I is a monomial ideal.
- 3. A \mathbb{Z} -graded or homogeneous ideal of $k[X_n]$, is an ideal that has generating set consisting of homogeneous polyonomials. In that case $k[X_n]/I$ is a graded module.

2.16. A homomorphism of *G*-graded modules or a *G*-graded homomorphism is a *R*-module homomorphism $\phi : M \to N$ that is degree preserving, $\phi([M]_a) \subset [N]_a$.

For any $a \in G$ and a *G*-graded module *M*, the module M(a) has the same module structure as *M*, but grading given by

$$[M(a)]_b := [M]_{a+b}$$

M(a) is a degree *a* shift of *M*. (Note here that the convention is opposite of that in algebraic topology.)

Example 2.17. 1. Consider $k[X_n]$ with standard grading.

$$\phi : k[X_n] \to k[X_n]$$
$$f \mapsto x_1^2 f$$

is not a graded homomorphism. However define

$$\psi : k[X_n](-2) \to k[X_n]$$
$$f \mapsto x_1^2 f$$

then $f \in k[X_n](-2)$ has degree deg f + 2. So $f \in [k[X_n](-2)]_{\deg f+2}$.

2. For any $a \neq in G$, R(a) is not a graded ring, (because identity is not in 0 dimension), but it is a graded *R*-module.

Lemma 2.18. If $\phi : M \to N$ is a homomorphism of graded modules, then ker ϕ , im ϕ , coker ϕ are graded modules.

Proof. $[\ker \phi]_a = \ker \phi \bigcap [M]_a$, and $[\operatorname{im} \phi]_a = \operatorname{im} \phi \bigcap [N]_a$.

Example 2.19. 1. If *M* is a \mathbb{Z} graded module with generators m_1, \ldots, m_t where $d_i = \deg m_i$, then

$$\phi : \bigoplus_{i=1}^{t} R(-d_i) \longrightarrow M$$
$$\begin{bmatrix} r_1 \\ \vdots \\ r_t \end{bmatrix} \mapsto \sum_{i=1}^{t} r_i m_i$$

is a homomorphism of graded *R*-modules and is surjective.

2. Consider $I = \langle x^3, xy, y^4 \rangle \subset k[x, y] + S$ with standard grading.

$$\phi : S(-3) \oplus S(-2) \oplus S(-4) \to I$$

$$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} \mapsto f_1 x^3 + f_x y + f_3 y^4$$

$$\ker \phi : \left\langle \begin{bmatrix} y \\ -x^2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ y^3 \\ -x \end{bmatrix} \right\rangle \xleftarrow{\simeq}_{\text{graded hom}} S(-4) \oplus S(-5)$$

There exists an exact sequence,

$$0 \rightarrow \bigoplus_{\substack{S(-4)\\S(-5)}} \underbrace{S(-4)}_{\substack{y = 0\\-x^2 = y^3\\0 = -x}} \underbrace{S(-2)}_{\substack{\phi\\S(-2)}} \underbrace{\phi}_{\substack{f}\\S(-2)} \underbrace{\phi}_{\substack{f}\\S(-2)} \underbrace{S(-4)}_{\substack{f}\\S(-4)} \underbrace{S(-4)}_{\substack$$

Definition 2.20. For any \mathbb{Z} graded module *M* over $k[X_n]$ its Hilbert function is

$$h_m : \mathbb{Z} \to \mathbb{Z}$$

 $j \mapsto h_m(j) := \dim_k [M]_j$

assuming $[M]_j$ is finitely generated for all j.

Remark 2.21. For any monomial ideal $I \subset k[X_n]$, 2.1 and 2.20 agree.

$$\dim_k[k[X_n]/I]_j = |[\operatorname{Mon}(k[X_n])]_j - I|$$

Proposition 2.22. For every graded submodule *M* of a finitely generated free $k[X_n]$ module *F* and any monomial order < of *F*,

$$h_{F/M}(j) = rac{h_F(j)}{\operatorname{im}(M)} \, \forall j \in Z$$

Corollary 2.23. For any finitely generated $k[X_n]$ submodule $m \neq 0$, Hilbert series is of the form

$$egin{aligned} H_M(z) &:= \sum_{j\in Z} h_M(j) z^j \ &= rac{\kappa_M(z) z^t}{(1-z)^d} \end{aligned}$$

where $\kappa_M(z) \in \mathbb{Z}[z], \kappa_M(0) \neq 0, \kappa_M(1) > 0, t \in \mathbb{Z}$.

There is a HIlbert polynomial $p_M(z) \in \mathbb{Q}(z)$ such that

$$h_M(j) = p_M(j) \ j >> 0$$

(krull) dimension of M is defined as

 $\dim M = d$

and the degree is

$$\deg(M) = \kappa_M(1)$$

Proof. Let *M* be generated by m_1, \ldots, m_t of degree d_1, \ldots, d_t respectively. Define

$$\phi : \oplus_{i=1}^{t} S(-d_i) \twoheadrightarrow M$$
$$f \mapsto x_1^2 f$$

is not a graded homomorphism. However define

$$\psi : k[X_n](-2) \to k[X_n]$$

$$\begin{bmatrix} f_1 \\ vdots \\ f_t \end{bmatrix} \mapsto \sum f_i m_i$$

Set $N = \ker \phi$ and we have a short exct sequence $0 \to N \to F \to M \to 0$ and by rank nullity theorem we have $h_M(j) = h_F(j) - h_N(j)$. *S* and *F* have desired Hilbert series which are rational functions. So it is enough to show the same for *N*, which is same as $h_{F/\operatorname{im}(N)}$.

im(N) is generated by monomials. So

$$\frac{F}{\operatorname{im}(N)} \cong \bigoplus_{i=1}^{t} \underbrace{\left(\frac{S}{J_{i}}\right)}_{\operatorname{has the}_{\operatorname{desired}}} (-d_{i})$$

for monomial ideals J_i .

Example 2.24. 1. $S = k[X_n], F - \bigoplus_{i=1}^{t} S(-d_i)$. Then $H_{S(-d_i)}(z) = \frac{z_i^d}{(1-z)^n}$

2. Consider
$$I = \langle x^3, xy, y^4 \rangle \subset k[x, y] + S$$
 with standard grading. $A = S/I$. We have the exact sequence,

$$S(-3)$$

$$0 \rightarrow \bigoplus_{S(-5)}^{S(-4)} \xrightarrow{\phi} S(-2) \xrightarrow{\phi} S \rightarrow A = S/I \rightarrow 0$$

$$S(-5) \xrightarrow{\oplus} [x^3 \quad xy \quad y^4]$$

$$\begin{aligned} H_A(z) &= H_S(z) - H_{S(-3)\oplus S(-2)\oplus S(-4)}(z) + H_{S(-4)\oplus S(-5)}(z) \\ &= H_S(z) - H_{S(-3)}(z) - H_{S(-2)}(z) + H_{S(-4)}(z) + H_{S(-5)}(z) - H_{S(-4)}(z) \\ &= \frac{1 - z^3 - z^2 + z^5}{(1 - z)^2} \\ &= 1 + 3z + 2z^2 + z^3 \end{aligned}$$

So dim A = 0 and deg M = 6 (polyonomial evaluated at 1).

Lemma 2.25. Let $d \in N$. Every $a \in \mathbb{N}$ admits a unique presentation of the form

$$a = \binom{k_d}{d} + \binom{k_{d-1}}{d-1} + \dots + \binom{k_s}{s}$$

with integers $k_d > k_{d-1} \cdots > k_s$. It is called the *d*-Macaulay presentation of *a*.

Example 2.26. For *d* = 3 and *a* = 12, we have

$$12 = \begin{pmatrix} 5\\3 \end{pmatrix} + \begin{pmatrix} 2\\2 \end{pmatrix} + \begin{pmatrix} 1\\1 \end{pmatrix}$$

Definition 2.27. If a > 0 with *d*-Macaulay presentation

$$a = \binom{k_d}{d} + \binom{k_{d-1}}{d-1} + \dots + \binom{k_s}{s}$$

set

$$a^{\langle d \rangle} = \binom{k_{d+1}}{d+1} + \binom{k_d}{d} + \dots + \binom{k_{s+1}}{s+1}$$

Example 2.28. $12^{(3)} = 17$

Theorem 2.29 (Macaulay). Let $h : \mathbb{N}_0 \to \mathbb{Z}$, the following are equivalent,

- 1. There is some $n \in \mathbb{N}_0$ and some homogeneous ideal $I \subset k[X_n]$ such that Hilbert function of $A = k[X_n]/I$ is h.
- 2. There is a monomial ideal (Lexicographic ideal) $I \subset k[X_n]$ with n = h(1) such that Hilbert function of A is h.
- 3. h(0) = 1 and

$$h(j+1) \le h(j)^{\langle j \rangle}$$
 if $j > 0$

Moreover for every graded k-algebra A, one has

$$h_A(j+1) = h_A(j)^{\langle j \rangle}$$
 if $j >> 0$

Example 2.30.

 \tilde{h} is not a possible Hilbert function because $12^{(3)} = 17$. While *h* is a possible Hilbert function.

3 Ideals and Schemes

3.1 Affine case

Definition 3.1. A ring *R* is reduced if $r^n = 0$ for some $n \in \mathbb{N}$ implies r = 0.

Lemma 3.2. Considere a reduced ring *R* and an ideal *I* of *R*. Then *R*/*I* is reduced iff $I = \sqrt{I}$. Hilbert's Nullstellensatz gives bijection if $k = \overline{k}$. Let $S = k[x_1, ..., x_n]$.

$$\begin{cases} \text{Subvarieties of} \\ \mathbb{A}_{k}^{n} \end{cases} \begin{cases} \stackrel{I}{\xrightarrow{Z}} \left\{ \begin{array}{c} \text{Radical Ideals of} \\ S \end{array} \right\} \stackrel{\leftarrow}{\Rightarrow} \left\{ \begin{array}{c} \text{Reduced factor} \\ \text{rings of } S \end{array} \right\} \\ J \mapsto S/J \\ \ker(S \to A) \leftrightarrow A \end{cases}$$

Definition 3.3. The geometric object *X* associated to an ideal $J \,\subset S$ is called an affine (sub) scheme of \mathbb{A}_k^n . $I_X := J$ is called the defining ideal of *X* and S/J is called co-ordinate ring. $X = \operatorname{spec}(S/J)$ to denote the scheme *X*. The reduced subscheme of *X* is $X_{red} = \operatorname{spec}(S/\sqrt{J})$. It is also called the *support* of *X*.

- **Remark 3.4.** 1. Definition 3.3 is a special case of an affine scheme. Spec(S/J) is the set of prime ideals of S/J endowed with Zariski topology where closed sets are of the form V(p) where p is a prime in S containing J.
 - 2. If $k = \bar{k}$, then the points of $X = \operatorname{Spec}(k[X_n]/\sqrt{J}) \subset \mathbb{A}_k^n$ are the points of $X_{red} = Z(J) = Z(\sqrt{J})$. (The scheme X captures more information, for example multiplicities of the common zeroes)

Example 3.5. For any $j \in \mathbb{N}$ the scheme $Y_j \subset \mathbb{A}^n$ defined by $(x_1, \dots, x_n)^j$ is supported at the point $(0, \dots, 0)$ i.e. $(Y_j)_{red} = \{(0, \dots, 0)\}$. Sometimes Y_j is called a *fat point*.

Definition 3.6. The dimension of $Y = \text{Spec}(k[X_n]/J)$ is dim $Y = \dim k[X_n]/J$ (as defined using Hilbert series 2.3)

Example 3.7. dim Spec $\frac{k[X_n]}{(x_1,...,x_n)^j} = 0 \quad \forall j$

Definition 3.8. Let $X, Y \subset \mathbb{A}^n$ be subschemes of \mathbb{A}^n . Then X is called a subscheme of Y, if $I_Y \subset I_X$. In symbols $X \subset Y$.

The intersection $X \cap Y$ is the scheme defined by $I_X + I_Y$ and the union $X \cup Y$ is defined by $I_X \cap I_Y$.

Example 3.9. Continuing with the notation used in 3.5, we have $Y_1 \subsetneq Y_2 \subsetneq \cdots$, but $Y_2 \nsubseteq \underbrace{\text{Spec}(\frac{k[X_n]}{(x_2,\ldots,x_n)})}_{\text{line}}$ ("fat point sticks out of line")

Theorem 3.10 (Primary decomposition theorem).

Example 3.11. An affine scheme $Y \subset \mathbb{A}^n$ is irreducible if for any subschemes $Y_1, Y_2 \subset Y$ with $Y_1 \cup Y_2 = Y$ either $Y = Y_1$ or $Y = Y_2$ or $Y_{red} = (Y_1)_{red} = (Y_2)_{red}$

Lemma 3.12. 1. *Y* is irreducible iff I_Y is primary.

- 2. *Y* is irreducible and reduced iff I_Y is a primary ideal.
- **3.13.** 1. The fat points Y_j in 3.5 are irreducible but not reduced if $j \ge 2$
 - 2. A line *Y* is defined by $I_Y = \langle l_1, ..., l_{n-1} \rangle$, where l_i are linear independent polynomials in $k[X_n]$. Any line is reduced and irreducible.

Corollary 3.14. Every affine scheme is a finite union of irreducible schemes

3.2 **Projective Schemes**

3.15 Notation. $m = \langle x_0, \dots, x_n \rangle \subset k[x_0, \dots, x_n] \subset S$.

- $J \subsetneq S$ is a homogeneous ideal or equivalently $J \subset m$
- If $k = \bar{k}$ we have bijections

$$\left\{ \begin{array}{cc} V \subset \mathbb{P}^n \\ \text{projective} \\ \text{variety} \end{array} \right\} \stackrel{I}{\underset{Z}{\hookrightarrow}} \left\{ \begin{array}{c} \text{homogeneous} \\ \text{Radical Ideals} \\ J \subset m \end{array} \right\} \stackrel{rightarrow}{=} \left\{ \begin{array}{c} \text{Reduced graded} \\ \text{quotient} \\ \text{rings of } S \end{array} \right\}$$

Definition 3.16. Let \mathfrak{p} be a prime ideal. A \mathfrak{p} -primary ideal \mathfrak{q} is a primary ideal \mathfrak{q} with $\sqrt{\mathfrak{q}} = p$ **Lemma 3.17.** A homogeneous ideal $J \subset m$ is m-primary iff $\sqrt{J} = m$.

Definition 3.18. The saturation of a homogeneous ideal *J* is the ideal

$$J^{\text{sat}} := \bigcup_{n \ge 1} (J : m^k) \supset J$$

J is saturated if $J = J^{\text{sat}}$.

Lemma 3.19. Let $J \subset m$ be homogeneous. TFAE

- 1. J is saturated
- 2. *m* is not an associated prime ideal of S/J.
- 3. There is some homogeneous $f \in S$ of positive degree such that $\overline{f} \in S/J$ is a non-zero divisor equivalent to (J : f) = J.
- **Remark 3.20.** 1. If $J = q_1 \cap q_2 \cap \cdots \cap q_s$ is a minimal primary decomposition of J with homogeneous q_i and say q_s is *m*-primary, then

$$J^{\rm sat} = q_1 \cap \cdots \cap q_{s-1}$$

2. If $\sqrt{J} \subseteq m$ then J^{sat} is the largest homogeneous ideal $I \subset S$ such that $[J]_k = [I]_k$ for any $k \gg 0$. ([J] - k is the space of polynomials of degree k.)

Example 3.21. Consider
$$J = \langle x^3, x^2y \rangle = \langle x^2 \rangle \cap \underbrace{\langle x^3, y \rangle}_{\langle x, y \rangle}$$
. $J^{\text{sat}} = \langle x^2 \rangle$. In $k[x, y, z]$, $J^{\text{sat}} = J$

Definition 3.22. For every homogeneous ideal J with $\sqrt{J} \subseteq m$, we consider S/J^{sat} as a geometric object X called a projective (sub)scheme of \mathbb{P}^n . The homogeneous ideal of X is $I_X = J^{\text{sat}}$ and S/J^{sat} is called the homogeneous coordinate ring of X. Sometimes we write $X = \text{Proj}(S/J) = \text{Proj}(S/J^{\text{sat}})$ for the projective scheme defined by J.

Remark 3.23. 1. One has the following bijections

$$\{\emptyset\} \bigcup \left\{ \begin{array}{c} \text{Projective} \\ \text{subschemes} \\ \text{of } \mathbb{P}^n \end{array} \right\} \stackrel{1:1}{\leftrightarrow} \{m\} \bigcup \left\{ \begin{array}{c} \text{homogeneous} \\ \text{saturated ideals} \\ J \\ \text{with } \sqrt{J} \subseteq m \end{array} \right\} \stackrel{1:1}{\leftrightarrow} \left\{ \begin{array}{c} k \\ \cong S/m \end{array} \right\} \bigcup \left\{ \begin{array}{c} \text{graded quotient} \\ \text{ring} \\ \text{of } S \text{ with a} \\ \text{non-zero} \\ \text{divisor of} \\ \text{positive degree} \end{array} \right\}$$

2. For projective subschemes $X, Y \subset \mathbb{P}^n$ the concepts of reducible, irreducible, $X \subset Y, X \cap Y, X \cup Y$ are analogous to affine case.

$$I_{X \cap Y} = (I_X + I_Y)^{\text{sat}}$$
$$I_{X \cup Y} = (I_X \cap I_Y)$$

Example 3.24. $X, Y \subset \mathbb{P}^3$ be schemes with homogeneous ideals

 $I_X = \langle x_0, x_1 \rangle \cap \langle x_2, x_3 \rangle \Leftrightarrow$ pair of skew lines $I_Y = \langle x_1 + x_2 \rangle \Leftrightarrow$ hyperplane

 $X \cap Y$ should consist of two points.

$$I_X + I_Y = \langle x_0, x_1, x_2 \rangle \cap \langle x_1, x_2, x_3 \rangle \cap \underbrace{\langle x_0, x_3, x_1 + x_2, x_1 x_2 \rangle}_{\langle x_0, \dots, x_3 \rangle - \text{primary}}$$

 $I_{X \cap Y} = (I_X + I_Y)^{\text{sat}} = \langle x_0, x_1, x_2 \rangle \cap \langle x_1, x_2, x_3 \rangle \text{ and } X \cap Y = X \cap Y_{\text{red}} = \{(0 : 0 : 0 : 1), (1 : 0 : 0 : 0)\}.$ dim X = 1, dim Y = 2 deg X = 2, deg Y = 1

Definition 3.25. For a projective subscheme $X \subset \mathbb{P}^n$, we define it's dimension as

$$\dim(X) = \dim(S/I_X) - 1$$

and degree as

$$\deg X = \deg I_X = \deg(S/I_X)$$

4 Bezout's theorem

Definition 4.1. Consider any *R*- module *M*. An element $r \in R$ is called *M*-regular if rm = 0 for any $m \in M \implies m = 0_M$ Otherwise *r* is called a zero-divisor of *M*.

Note. $f \in R$ is *M*-regular if $0 :_M f = 0 :_M \langle f \rangle = 0$

Example 4.2. The zero divisors of \mathbb{Z} - mod Z/6Z are precisely the integers $\langle 2 \rangle \cup \langle 3 \rangle$

Proposition 4.3. If *M* is finitely generated graded *S*-module and $f \in S$ is *M* regular of positive degree, then

- 1. $\dim M / fM = \dim M 1$
- 2. $\deg M/fM = \deg f \deg M$

Proof. Since f is M regular, there exists a short exact sequence $(d = \deg f)$

$$0 \to M(-d) \stackrel{f}{\mapsto} M \to \frac{M}{fM} \to 0$$
$$m \mapsto fm$$

So $h_{M/fM}(j) = h_M(j) - h_M(j-d)$

Lemma 4.4 (Mayer-Vietoris sequence). If N_1 , N_2 ar graded submodules of a graded submodule M, then there is a SEQ of graded modules

$$0 \rightarrow \frac{M}{N_1 \cap N_2} \rightarrow \frac{M}{N_1} \oplus \frac{M}{N_2} \rightarrow \frac{M}{N_1 + N_2} \rightarrow 0$$
$$m \mapsto (m, m)$$
$$(m_1, m_2) \mapsto m_1 - m_2$$

Corollary 4.5. If $I, J \subset S$ are homogeneous ideals, then $h_{\frac{S}{I+J}(k)} = h_{\frac{S}{I}}(k) + h_{\frac{S}{I\cap J}}(k)$ for all $k \in \mathbb{Z}$.

Corollary 4.6. 1. $\dim(\frac{S}{I\cap J}) = \max\{\dim S/I, \dim S/J\}$

2. If WLOG dim $S/I \ge \dim S/J$, then

$$\deg(\frac{S}{I \cap J}) = \begin{cases} \deg S/I & \dim S/I > \dim S/J \\ \deg S/I + \deg S/J & \dim S/I = \dim S/J > \dim S/I + J \\ \deg S/I + \deg S/J & \dim S/I = \dim S/I + J \\ -\deg S/I + J \end{cases}$$

5 Free Resolutions

5.1 Notation. $S = k[x_0, ..., x_n]$ where deg $x_i = 1, m = \langle x_0, ..., x_n \rangle = \bigoplus_{i>0} [S]_i$

$$A = S/I, m = m_A = \bigoplus_{j>0} [S/I]_j$$

M finitely generated \mathbb{Z} graded *A*-module. $\phi : M \to N$ hom of graded modules (degree preserving).

Lemma 5.2 (Nakayama's lemma). 1. If $\frac{M}{mM} = 0$, then M = 0

2. If the images of homogeneous $m_1, ..., m_t \in M$ generate $\frac{M}{mM}$ as an A module, then they generated M as an A module.

Proof. 1. See Eisenbud Cor 4.8

2. Set
$$N = \frac{M}{\langle m_1, \dots, m_t \rangle}$$
, then $\frac{N}{mN} \cong \frac{M}{mM + \langle m_1, \dots, m_t \rangle} = 0$. This gives $N = 0$, $\implies M = \langle m_1, \dots, m_t \rangle$.

Corollary 5.3. For homogeneous elements $m_1, \ldots, m_t \in M$ TFAE:

1. $M = \langle m_1, \ldots, m_t \rangle$

2. The images $\overline{m_1}, \dots, \overline{m_t}$ in M/mM genearted M/mM as a module over $A/m \simeq k$.

Definition 5.4. A minimal generating set *G* consists of homogeneous lements such that *G* $\{g\}$ is not a generating set $\forall g \in G$...

Corollary 5.5. If $\{m_1, ..., m_t\}, \{n_1, ..., n_s\}$ are minimal generating sets of M, then s = t and deg $m_i = \deg n_i$ for $i \in [t]$ upto reindexing.

Definition 5.6. Let ϕ : $F \rightarrow M$ be any surjective hom of fg graded A modules, where F is free.

- 1. The fg *A* module ker ϕ is called a (first) syzygy module of *M* (over *A*). It's elements are called (first) syzygies (correspond to relations among generators of *M*).
- 2. The map ϕ is said to be minimal if the induced hom

$$\overline{\phi} : \frac{F}{mF} \xrightarrow{\approx} \frac{M}{mM}$$
$$\overline{f} \mapsto \overline{\phi(f)}$$

is an isomorphism of *k*-vector spaces where $k \simeq A/m$.

Remark 5.7. Let $\{e_1, \ldots, e_s\}$ be a basis of *F*. Then ϕ is minimal iff $\{\phi(e_1), \ldots, \phi(e_s)\}$ is a min gen set of *M*.

Example 5.8. S = k[x].

$$0 \to S(-1) \xrightarrow{x} S \xrightarrow{\phi} k \to 0 \quad \phi \text{ is minimal}$$

$$0 \to \bigoplus_{S} \begin{array}{c} S(-1) & \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} \\ S & \xrightarrow{\psi} k \to 0 \quad \psi \text{ is not minimal} \end{array}$$

In fact ker $\psi \cong \ker \phi \oplus S$.

Lemma 5.9. The first syzygy module of *M* is unique upto isomorphism and free direct sums.

Proof. Consider surjective map ϕ : $F \to M$ where $F = \bigoplus_{i=1}^{t} Ae_i$.

1. Suppose ϕ is not minimal. WLOG { $\phi(e_1), \dots, \phi(e_r)$ } is a min gen set of M ($r \le t$). Write $F - G \oplus P$ where $G = \bigoplus_{i=1}^r Ae_i$ and $P = \bigoplus_{i=r+1}^t Ae_i$. Then the restrictiont $\psi = \phi|_G : G \to M$ is minimal.

The commutative diagram induces (snake lemma) a short exact sequence

$$0 \to \ker \psi \to \ker \phi \to P \to 0$$

P free \implies ker $\phi = P \oplus$ ker $\psi \rightsquigarrow$ syzygy from minimal map.

2. Assume ϕ is minimal and $\psi : G \to M$ is another minimal homomorphism. To show $\ker \phi \cong \ker \psi$. By 5.5 there is an isomorphism $\epsilon : G \to F$ such that

this commutative diagram gives us ker $\phi \cong \ker \psi$.

- **Definition 5.10** (Minimal Free resolution). 1. A hom $\phi : F \to G$ of free A modules is called minimal if $im(\phi) \le m_A G$.
 - 2. A (graded) free resolution of M (over A) is an exact sequence of fg graded A modules

$$F_{\bullet} \quad \dots \to F_t \xrightarrow{\phi_t} F_{t-1} \to \dots \to F_1 \xrightarrow{\phi_1} F_0 \to M \to 0$$

where each F_i is free and ϕ_i is graded.

It is called minimal free resolution if each ϕ_i with $i \ge 1$ is minimal.

- **Remark 5.11.** 1. $\phi : F \xrightarrow{[B]} G$ is minimal iff any coordinate matrix of ϕ does not have any units of *A* as entries.
 - 2. The first sequence in 5.8 is a MFR, but second sequence is a free resolution but not minimal.

Theorem 5.12. 1. Any fg graded *A* module has a MFR (graded) *F*.

- 2. If *G* is any free resolution of *M*, then there is a complex *P*. of free *A* modules and an isomorphism of complexes $G \cong F \oplus P$. In particular any two MFR of *M* are isomorphic.
- *Proof.* 1. Existence and uniqueness follows from iterating 5.7 and 5.9.

2. Suppose G is not minimal, we will show that we can "cancel" at least a (shifted) copy of A in two consecutive free modules. Indeed by assumption there is some $i \ge 1$, such that ϕ_k is not minimal. Fix a coordinate matrix $B = (b_{ij})$ of ϕ_k . It contains a unit, say $b_{i_0,j_0} \in k^*$.

Performing elementary row and column operations (changing base of G_k , G_{k-1}) we get another coordinate matrix.

$$\tilde{B} = \begin{bmatrix} 0 \\ \vdots \\ 0 \cdots & b_{i_0 j_0} & 0 \cdots \\ \vdots \\ 0 \end{bmatrix}$$

Denote by B', the matrix obtained from \tilde{B} by deleting row i_0 and column j_0 . Then ϕ_k decomposes as

$$\phi_{k} = \begin{array}{ccc} \phi_{k}' & G_{k}' & G_{k-1}' \\ \oplus & \vdots & \oplus & \rightarrow & \oplus \\ \psi & A(-d) & A(-d) \end{array}$$

and

$$\phi'_k : G'_k \xrightarrow{B'} G'_{k-1}$$

is given by multiplication by B' and

$$\psi \,:\, A(-d) \xrightarrow[\approx]{b_{i_0,j_0}} A(-d)$$

Since ker $\phi_k = \ker \phi'_k$ and im $\phi_k = \operatorname{im} \phi'_k \oplus A(-d)$ the sequence obtained from G_0 by cancelling the complex

$$0 \to A(-d) \xrightarrow{b_{i_0 j_0}} A(-d) \to 0$$

is also a free resolution of M.

Definition 5.13. Let $\dots \to F_1 \to F_0 \to M \to 0$ be a MFR of *M*. By the previous theorem, there are unique integers $\beta_{ij} \in \mathbb{N}_0$ such that $F_i \cong \bigoplus_j A(-j)^{\beta_{ij}}$

The numbers $\beta_{ij}^A(M)$ are called the graded Betti numbers of M (over A).

Example 5.14. Consider $I = \langle x^2, xy, y^3 \rangle \subset S = k[x, y]$. Then *S*/*I* has a MFR

$$0 \rightarrow \begin{array}{c} S(-3) \\ \oplus \\ S(-4) \end{array} \xrightarrow{\begin{pmatrix} y & 0 \\ -x & y^2 \\ 0 & -x \end{pmatrix}} \\ S(-2)^2 \\ \oplus \\ S(-2)^2 \\ \oplus \\ S(-3) \end{array} \xrightarrow{\begin{pmatrix} x^2 & xy & y^3 \end{pmatrix}} S \rightarrow S/I \rightarrow 0$$

Definition 5.15. 1. $F = \bigoplus_{i=1}^{r} Ae_i$. Define the j^{th} exterior power to be the free *A*-module $\wedge^{j} F$ whose basis elements are of the form

$$e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_j}$$
 with $1 \le e_i < i_2 < \cdots < i_j \le r$

Thus rank $(\wedge^{j} F) = \binom{r}{i}$.

2. $g_{\bullet} = g_1, ..., g_r \in A$ be sequence of homogeneous elements. Set $F = \bigoplus_{i=1}^{r} Ae_i$ with deg $e_i = \deg g_i$. Then the Koszul complex to g_{\bullet} is the complex

$$K_{\bullet}(g_{\bullet}): 0 \to \wedge^{r}F \to \wedge^{r-1}F \to \dots \to \wedge^{j}F \xrightarrow{\phi_{j}} \wedge^{j-1}F \to \dots \to \wedge F \to \wedge^{0}F = A \to \frac{A}{\langle g_{1}, \dots, g_{r} \rangle} = F \to 0$$

with

$$\phi_j : \wedge^j F \to \wedge^{j-1} F$$
$$e_{i_1} \wedge e_{i_2} \wedge \dots \wedge e_{i_j} \mapsto \sum_{k=1}^j (-1)^{k+1} g_{i_k} e_{i_1} \wedge e_{i_2} \wedge \dots \wedge \hat{e}_{i_k} \wedge \dots \wedge e_{i_j}$$

It is a graded complex: $\phi_{j-1}\phi_j = 0$ and $\deg(e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_j}) = \sum_{j=1}^{j} \deg e_{i_k}$ **Example 5.16.** The complex to x^2 , y over S = k[x, y] is

$$0 \rightarrow \frac{S(-3)}{\langle e_1 \wedge e_2 \rangle} \xrightarrow[]{\left[\begin{matrix} -y \\ x^2 \end{matrix}\right]} & S(-2) \\ \oplus & \\ S(-1) & \hline \end{matrix} \xrightarrow[]{\left[x^2 y\right]} & \frac{S}{\langle x^2, y \rangle} \rightarrow 0$$

It is exact.

"repeating elements break exactness"

$$0 \to S(-3) \xrightarrow{\begin{bmatrix} -1 \\ 1 \end{bmatrix}} S(-2) \xrightarrow{[x^2x^2]} S \to 0$$
$$S(-2)$$

cancel

$$0 \to S(-2) \xrightarrow{x^2} S \to \frac{S}{x^2} \to 0$$

which is the Koszul comlex of x^2 .

Proposition 5.17. The Koszhul complex to $g_{\bullet} = g_1, ..., g_r \in A$ is exact iff $g_1, ..., g_r$ is a regular sequence.

Proof. Refer Eisenbud.

Theorem 5.18 (Hilbert's Syzygy theorem). Every finitely generated graded $S = k[x_0, ..., x_n]$ -module M has a finite minmal finite resolution:

$$0 \to F_t \to F_{t-1} \to \dots \to F_0 \to M \to 0$$

with $t \le n + 1 \dim S$.

Proof. There is a homological argument using Koszul complex on $x_0, ..., x_n$ and another constructive proof using Gröbner basis.

Example 5.19. $A = \frac{k(x)}{x^2}$

$$\dots \to A(-2) \xrightarrow{x} A(-1) \xrightarrow{x} \frac{A}{x} = k \to 0$$

is a MFR of k over A. It is infinite.

Remark 5.20. Describing which sets of graded Betti numbers occur among (classes of) fg graded *S*-modules is an active area of research.

Theorem 5.21. The greaded Betti number of fg graded S module determine its Hilbert series

$$H_m(z) = \frac{\sum_{i,j} (-1)^i \beta_{i,j}(z)^j}{(1-z)^{n+1}} \leftarrow \text{rational}$$

Proof. Let $0 \to F_t \to \cdots \to F_1 \to F_0 \to M \to 0$ be a MFR of M. Then

Since $F_i \cong \bigoplus_j S(-j)^{\beta_{i,j}}$, the claim follows.

Definition 5.22. The depth of a graded *A*-module *M* is the maximal length of a *M*-regular sequence consisting of homogeneous elements of *A* of positive degree, denoted by depth_{*A*}(*M*).

Remark 5.23. 1. For any homogeneous ideal $S, I \subset m_s$

$$depth(S/I) \ge 1 \iff I$$
 is saturated

2. For any graded *M*, depth(*M*) \leq dim(*M*). (dim = 0 \implies depth = 0.)

Definition 5.24. A finitely generated *A*-module is it Cohen-Macaulay if depth(M) = dim(M).

Example 5.25. 1. *S* is CM as an *S*-module.

- 2. Any 0-dimensinoal module is CM.
- 3. For $I = \langle x^3, x^2y \rangle = \langle x^2 \rangle \cap \langle x^3, y \rangle \subset k[x, y] \dim S/I = 1$ and depth_s S/I = 0. $(I^{sat} = \langle x^2 \rangle)$. So /I is not CM.
- 4. If $X \subset \mathbb{P}^n$, dim X = 0. S/I_X is CM S-module.
- 5. dim $S/I_x = 1 \ge \operatorname{depth} S/I_x \ge 1$ (since I_x is saturated.)

Proposition 5.26. A *K* algebra A = S/I is CM (as an *A*-module) iff there is graded polynomial subalgebra *N* with dim $N = \dim A$ and *A* is a fg generated graded free *N*-module. (Nother Normalization)(Free module over polynomial subalgebra)

Proof. Refer Eisenbud.

Theorem 5.27 (Auslander-Buchsbaum). Suppose a finitely generated graded *A*-module *M* has a MFR

$$0 \to F_t \to F_{t-1} \to \cdots \to F_0 \to M \to 0$$

It's length *t* is called the it projective dimension of *M*. So projdim(M) := t

If A = S, then

$$\operatorname{projdim}(M) = \underbrace{n+1}_{\dim(S)} - \operatorname{depth}(M) \ge n+1 - \dim(M)$$

Proposition 5.28. For any fg graded *A*-module *M*

$$\operatorname{projdim} M \ge n + 1 - \dim M$$

with equality iff M is CM.

Proof. projdim $M = n + 1 - \operatorname{depth} M$ dim $M \ge \operatorname{depth} M$

Definition 5.29. A = S/I is said to be Gorenstein algebra if it is CM and if the last free module in a MFR of *A* has rank one, i.e.,

$$0 \to S(-d) \to F_{t-1} \to \cdots \to F_1 \to S \to A \to 0$$

with $t = n + 1 - \operatorname{depth} A$.

Example 5.30. 1. The Koszul complex shows that any complete intersection is Gorenstein.

2. If Δ is a triangualtion of sphere then it's Stanley-Reisner ring is Gorenstein.

For example 3 the above figure has Stanley-reisner ring A = S/I where $I = \langle x_0 x_2, x_0 x_3, x_1 x_3, x_1 x_4, x_2 x_4 \rangle$. The MFR of A has the for

$$0 \to S(-5) \to S(-3)^5 \to S(-2)^5 \to S \to A \to 0$$
$$\begin{bmatrix} x_3 & x_4 & 0 & 0 & 0 \\ -x_2 & \vdots & -z_1 & 0 & \vdots \\ & & -x_0 & x_4 & x_2 \\ -x_0 & \vdots & -x_3 & -x_1 \end{bmatrix}$$

5.31. Notation char(K) = 0 and $S = k[x_0, ..., x_n]$, $R = k[y_0, ..., y_n]$

Definition 5.32.

$$\beta : S \times R \to R$$

(f,G) $\mapsto \partial_f \cdot G$ (differentiation)

induced by $\partial_{x^a} G = \frac{\partial^{a_0}}{\partial y_0^{a_0}} \cdots \frac{\partial^{a_n}}{\partial y_n^{a_n}}$ and extend *k*-linearly

Lemma 5.33. 1. β is a perfect pairing, i.e. it is *k* bilinear and $\beta(f, G) = 0 \forall G \in R \implies f = 0$ and $\beta(f, G) = 0, \forall f \in S \implies G = 0$.

2. For an $i, j \in \mathbb{Z} \beta$ induces maps

$$[S]_j \times [R]_j \to [R]_{i-j}$$

In particular for any $j \in \mathbb{Z}$,

 $[S]_j \times [R]_j \to k$

is also a perfect pairing.

Proof. Bilinearity is clear. Now for any monomials $x^a \in S$, $y^b \in R$ of deg j then $\partial_{x^a} Y^b \neq 0$ iff a = b.

The map β turns *R* into an *S* module: $f \cdot g := \partial_f G$.

Definition 5.34. 1. For any homogeneous ideal $I \subset S$ define Macaulay's inverse system I^{\perp} as

$$I^{\perp} := \left\{ G \in R | \partial_f G = 0 \forall f \in I \right\}$$

a graded *S*-submodule of *R*.

2. For any graded S-submodule M of R define it's annihilator as

Ann(M) := {
$$f \in S | \partial_f G = 0$$
 for any $G \in M$ }

Note: $[S]_j[R]_i \subset [R]_{i-j}$ (not exactly what we mean by graded module. Can think of it as $[S]_{-j}$ but thats messy. So we bare with this little inconvenience.)

 $M \subset R$ a graded S-submodule (in the above sense). Define Ann(M) in the same way.

Example 5.35. 1. $G = y_0^2 y_1^3$, Ann $(G) = \langle x_0^3, x_1^4 \rangle$

2. $I = \langle x_0^2, x_1^3 \rangle$. Thn I^{\perp} has a *k*-basis $y_0 y_1^2, y_0 y_1, y_1^2, y_1, y_1, 1$.

Note:dim $A/I = \dim S/\sqrt{I} = \dim k = 0$. To think about dim 0 in terms of Hilbert dimension is dim $S/I = 0 \iff [S/I]_j = 0$ when j >> 0 iff dim_k $(S/I) < \infty$. $H_{S/I}(z) = \sum_{i>0} \dim_{[}; S/I]_j = \rho/(1-z)^d$.

3. $J = \langle x_0, x_1 \rangle \subset k[x_0, x_1, x_2]$. J^{\perp} has a k-basis $\{y_2^j : j \in \mathbb{N}_0\}$. It is not a fg S module $\dim S/I = 1$.

Theorem 5.36. There are bijections

{homogeneous ideals of S} \leftrightarrow { Graded S submodules of R} $I \mapsto I^{\perp}$ Ann(M) \leftrightarrow M

 I^{\perp} is a fg graded *S* -module $\iff \dim S/I = 0$.

Proof. The definition implies $I \subset Ann(I^{\perp})$ and $M \subset Ann(M)^{\perp}$. The equality follows by comparing dimensions.

Proposition 5.37. For any homogeneous ideal $I \subset S$ one has

$$\dim_k[I^{\perp}]_j = \dim_k[S/I]_j$$

for any $j \in \mathbb{Z}$.

Proof. Note that $[I^{\perp}]_j = \{G \in [R]_j : \partial_f G = 0, \forall f \in [I]_j\}$. Because if $f \in [I]_{j-1}$, then $\partial_f G = 0$ iff $\partial_l \partial_f G = \partial_{lf} G = 0$ for any $l \in [S]_1$. So it is enough to test *G* against polynomials of deg *j* in *I*.

Since $[S]_j \times [R]_j \to k$ is also a perfect pairing, it follows that $\dim_k[I]_j = \dim[S]_j - \dim[I]_j = \dim_k[S/I]_j$.

5.38. Properties of ythe bijection in 5.36

- 1. For any two graded *S*-submodules *M*, *N* of *R* one has $Ann(M + N) = Ann(M) \cap Ann(N)$
- 2. For any homogeneous ideals $I, J \subset S, (I \cap J)^{\perp} = I^{\perp} + J^{\perp}$.

Definition 5.39. An ideal $I \subset S$ is reducible if $I = a \cap b$ with $I \subsetneq a, I \subsetneq b$.

Remark 5.40. 1. $I = \langle x^2, y^2 \rangle$ is irreducible (I = Ann(xy)).

2. Every irreducible ideal is primary but not true conversely.

$$\left\langle x^{2}, xy, y^{2} \right\rangle = \left\langle x^{2}, y \right\rangle \cap \left\langle x, y^{2} \right\rangle$$

is not irreducible but primary.

Corollary 5.41. If $I \subset S$ homogeneous with dim S/I = 0 the *I* is irreducible iff I^{\perp} is principal. I = Ann(G) for some $G \in R$.

Proof. Use the properties of the bijection and $I = Ann(I^{\perp})$

Theorem 5.42. Let $I \subset S$ be a homogeneous ideal such that $\sim S/I = 0$. TFAE

- 1. S/I is gorenstein.
- 2. *I* is irreducible.
- 3. I = Ann(G) for some $G \in R$.
- 4. I^{\perp} is principal.

Proof. Since β is perfect pairing it follows that

 $\hom_k(S/I, k) \cong I^{\perp}(\text{up to adjustment of grading})$

It foolows for the MFR of S/I

$$0 \to F_{n+1} \to \cdots F_1 \to S \to S/I \to 0$$

 F_{n+1} has rank 1 iff I^{\perp} is principal.

Proposition 5.43. If S/I is gorenstein of dim 0 then it's Hilbert function is symmetric (or min genpalindromic) in teh sense, $\exists e \in \mathbb{N}$ such that erators of

$$\dim_k[S/I]_j = \dim_k[S/I]_{e-j}$$

for any *j*.

Proof. By the previous theorem I = Ann(G) for soem $G \in R$. Let $e = \deg G$.

Cpmsoder the map induced by β

$$[S]_{j} \xrightarrow{1}_{\phi} R]_{e-j}$$
$$f \mapsto \partial_{f} \circ G$$

We get

$$\dim_{k}[I^{\perp}]_{e-j} = \dim_{k} \left\{ \partial_{f}G|f \in [S]_{j} \right\}$$
$$= \dim_{k}[S]_{j} - \dim_{k}[\underbrace{\ker \phi}_{I}]_{j}$$
$$= \dim_{k}[S/I]_{j}$$

By 5.37 $\dim_k[I^{\perp}]_{e-j} = \dim_k[S/I]_{e-j}$

Example 5.44. $I = \langle x^2, y^2, z^2 \rangle \subset S = k[x, y, z]$. *S*/*I* is gorenstein.

 $\Box \quad \text{rank } F_{n+1} \text{ is } \\ \text{number of} \\ \text{(or min gen-} \\ \text{erators of } I^{\perp}.$

Lemma 5.45. If $X \subset \mathbb{P}^n$ is a finite set of pints and $h_X(j) = k$, then there is a subset $Y \subset X$ of k points with $h_Y(j) = k = h_X(j)$

Corollary 5.46. Let $X \subset \mathbb{P}_k^n$ be a finite set of pioonts where *k* is infinite.

1. There is some $e \in \mathbb{N}_0$ such that

$$h_X(0) < \cdots < h_X(e-1) < h_X(e) = h_X(j) = |X|$$

for an $j \ge e$.

2. If *X* is gorenstein, then $H_X(e-1) = |X| - 1$.

Proof. Since depth(S/I_X) > 0 (Ideal of scheme saturated \implies depth > 0). So $A = S/I_X$ contains a nonzero divisor of positive degree. As K is infinite there exists a nonzerodivisor of degree 1, say l

$$0 \to A(-1) \xrightarrow{l} A \to A/lA \to 0$$
$$a \mapsto al$$

is exact and so

$$h_{A/lA}(j) = h_A(j) - h_A(j-1)$$

 $\dim A/lA = \dim A - 1 = 0$

and

 $H_{A/lA}(z)$ is a polynomial. Denote it by *e* it's degree. Now first statement follows. By 5.43 we know

$$1 = h_{A/lA}(0) = h_{l/lA}(e)$$

which implies the second statement.

Example 5.47. If *A*/*lA* has Hilbert function

then *A* has Hilbert function 1, 4, 9, 12, 13, 13

Theorem 5.48 (Davis, Geramita, Orrechia, 1985). For a fintie set of points $X \subset \P^n$, TFAE

- 1. X is Gorenstein
- 2. There is some $c \in |X| h_X(e j) = h_X(j)$ for $0 \le j \le e/2$ and for any subset $Y \subset X$ with |Y| = |X| 1 one has $h_Y(e 1) = |X| 1$

finite set of points geom dim =0 so Krull dim =1

6 Waring Rank

 $S = k[x_0, ..., x_n]$ char(K) = 0. For any $d \in \mathbb{N}$, the k vector space of $[S]_d$ has a k basis of $\binom{n+d}{d}$ of powers of linear forms l_i^d , $l_i \in [S]_2$, $i \in \lfloor \binom{n+d}{d} \rfloor$

Hence for any $f \in [S]_d$ can be written as

$$f = \sum_{i=1}^{\binom{n+d}{d}} \lambda_i l_i^d \quad l_i \in k$$

If *K* is algebraically closed using $\lambda_i = \mu_i^d$ one gets

$$f = \sum_{i=1}^{\binom{n+d}{d}} (\mu_i l_i)^d$$

Definition 6.1. Given $f \in [S]_d$ any expression of the form

$$f = \sum_{i=1}^{r} l_i^d$$

where $l_i \in [S]_1$ is called a Waring decomposition of f.

The least *r* such that *f* has a Waring decomposition with *r* summands is called the waring rank denoted $wr(f) := wr_k(f)$

 $p(a) = \operatorname{rank}(O)$

Example 6.2. $xy = \frac{1}{4}[(x+y)^2 - (x-y)^2]$ so $wr_{\mathbb{R}}(xy) = 2$.

Determining the waring rank of a general polynomial is the problem of interest.

Proposition 6.3. If *K* is algebraically closed then for any $q \in [S]_2$ one has

where
$$Q \in K^{(n+1)\times(n+1)}$$
 is symmetric with $q = [x_0 \cdots x_n] Q \begin{bmatrix} x_0 \\ \vdots \\ x_n \end{bmatrix}$

Proof. Since *Q* is symmetric $\exists T$ invertible $\in K^{(n+1)\times(n+1)}$ such that

$$T^t Q T = \begin{bmatrix} a_1 & 0 \\ & \ddots & \\ 0 & & a_r \end{bmatrix}$$

Hence $x^t(T^tQT)x = \sum a_i x_i^2$. $q = [l_0 \cdots l_n]Q\begin{bmatrix} l_0 \\ \vdots \\ l_n \end{bmatrix} = q(l_0, \dots, l_n)$

Changing basis $l_i = y_i$, x_i is a linear form \tilde{l}_i in $y_0, ..., y_n$ we get $q(y_0, ..., y_n) = \sum a_0 \tilde{l}_i^2$

Theorem 6.4. For any sufficiently general $f \in [s]_d$ with $d \ge 3$, one has

$$\operatorname{war}(f) = \left[\frac{\binom{n+d}{n}}{n+1}\right]$$

except if d = 3 and n = 4 or d = 4 and $2 \le n \le 4$

Remark 6.5. This is a consequence of a result about Hilbert function Set $I := \bigcap_{j=1}^{r} I_{p_j}^2$ when $P_1, ..., P_r \in \mathbb{P}^n$ are general points. Then $h_A(j) = \min\left\{ (n+1)r, \binom{n+j}{r} \right\}$ for any j except j = 3, n = 4 and n = 9. or $j = 4, 2 \le n \le 4$ and $r = \binom{n+2}{4} - 1$

Recall for $R = k [y_0, ..., x_n]$ we have perfect pairing

$$S \times R \longrightarrow R$$
$$(f,G) \mapsto \partial_f \circ G$$
$$I \subset S \mapsto I^{\perp} \subset R$$
Ann(M) \leftrightarrow M

Every linear form $l = a_0 y_0 + \dots + a_n y_n \in R$ corresponds to a point and $P = (a_0 : \dots : a_n) \in \mathbb{P}^n$. **Lemma 6.6.** For any $f \in [S]_j$ $l = s_0 y_0 + \dots + a_n y_n$ and $d \in \mathbb{N}$ one has

$$\partial_f \cdot l^d = \frac{d!}{(d-j)!} f(a_0, \dots, a_n) l^{d-j}$$

Proof. It suffices to check this for $f = x^b = x_0^b \cdots x_n^{bn} \in [S]_j$ if $d \ge |b|$ where $l^{d-j} := 0$ if d < j.

Lemma 6.7 (Apolarity Lemma). Let $X \in \mathbb{P}^n$ be a set of *s* distinct points corresponding to linear forms l_1, \ldots, l_s . Cot $f \in [R]_d$ Then there are $c_1 \ldots c_s \in K$ st.

$$f = \sum_{i=1}^{\infty} c_i l_i^d \text{ iff } I_x \subset \operatorname{Ann}(f)$$

Proof. \implies To simplify notation, for $P = (a_0 : ... : a_n)$ write f(p) instead of $f(a_0, ..., a_n)$. By definition $g \in Ann(f)$ iff $0 = \partial_g \cdots f = 0$

 $g \in I_X$ satisfies $g(P_i) = 0$ for $i \in [s]$ This shows $I_X \subset Ann(f)$.

For any point $p = (a_0 \cdots a_n) \in \mathbb{P}^n$, one has

$$I_p^{\perp} = \left\{ c l_p^j : c \in k \quad j \in \mathbb{N}_0 \right\} \text{ with } l_p = c_0 x_0 + \cdots a_n x_n$$

(It is ETS for $p = (1 : 0 \dots : 0)$. Then $I_p = \langle x_1, \dots, x_n \rangle$ Thus $f \in I_p^{\perp} \iff \frac{\partial f}{\partial x_i} = 0 \iff f = c x_0^j$ for $c \in k$ $j \in \mathbb{N}_0$.)

$$I_x = I_{p_1} \cap \ldots \cap I_{ps} I_x^{\perp} = I_{p_1}^{\perp} + \ldots + I_{p_s}^{\perp} \text{ So } \left[I_x^{\perp} \right]_d = \left\langle l_1^d \right\rangle + \cdots + \left\langle l_s^d \right\rangle \text{ Hence } f = \sum_{i=1}^s c_i l_i^d \text{ with } c_i \in k \quad \Box$$

Theorem 6.8 (Catkin, Catalisamo, Geramita,2012). If k is algebraically closed, $1 \le a_0 \le a_1 \le \dots \le a_n$, then

$$\operatorname{wr}(\underbrace{y_0^{a_0}y_1^{a_1\dots y_n}a_n}_{G}) = \frac{1}{(a_0+1)}\prod_{i=0}^n (a_i+1)$$

Proof. If n = 0, then $wr(a_0^{x_0}) = 1$

Let $n \ge 1$. Since Ann(G) = $\langle x_0^{a_0+1}, x_1^{a_1+1}, \dots, x_n^{a_{n+1}} \rangle$ and $a_1 \le a_1 \le \dots a_m$, we get

Ann(G)
$$\supset J = \left\langle x_0^{a_1+1} - x_2^{a+1}, \dots x_0^{a_{n+1}} - x_n^{a+1} \right\rangle$$
 (1)

J is generated by a regular sequence, so dim S/J = 1 and deg $J = (a_1 + 1) \dots (a_n + 1) = r$. Let $\eta_i \in k$ be a primitive $a_i + 1$ root of unity and consider $X := \{(1 : \eta_1^{k_1} : \dots : \eta_n^{k_n}) \mid 0 \le k_i \le a_i \forall i\}$. Then $|X| = (a_1 + 1) \dots (a_m + 1) = r$ and $X \subset Z(J)$. Hence X = Z(J), $I_X = J \implies wr(G) \le r$ by Apolarity lemma.

Conversely by apolarity there is a saturated ideal $I \subset Ann(G)$ defining a set $\Gamma \subset \mathbb{P}^n$ of *s* points. So $I = \bigcap_{p \in \Gamma} (I_p : x_0) = \bigcap_{p \in \Gamma'} I_p$ where $\Gamma' \subset \Gamma$ is the subset of points not lying in the hyperplane defined by $X_0 = Z(x_0)$.

Set $s' = |\Gamma'| \le |\Gamma| = s$. So it suffices to show $s' \ge r$. Since $a_0 \ge 1$, we have $x_0 \notin \text{Ann}(G)(1 \text{ calculated explicitly})$ and thus $x_0 \notin I$ So $s' \ge q$, i.e., $\tilde{I} \ne S$, so $\tilde{I} : x_0 = \tilde{I}$. Hence for every j >> 0, we get

$$s' = h_{rac{s}{\overline{I}}}(j) = \sum_{k=0}^{J} h_{rac{s}{\overline{I}+x_0s}}(k)$$

Moreover $I \subseteq Ann(G)$ implies

$$\widetilde{I} = I : x_0 \subseteq \operatorname{Ann}(G) : x_0$$
$$= \left\langle x_0^{a_0}; x_1^{a_1+1}, \cdots, x_n^{a_{n+1}} \right\rangle$$

Degree of regular system of parameters=product of degrees

so

$$\tilde{I} + x_0 S = \langle x_0, x_1^{a_1+1}, \dots, x_n^{a_n+1} \rangle = \tilde{J} \rightsquigarrow \text{regular system of parameters}$$

Note, dim $S/\tilde{J} = 0$ and deg $\tilde{J} = (a_1 + 1) \dots (a_n + 1) = r$

It follows that

$$s' = \sum_{r=0}^{J} h_{\frac{s}{\tilde{I}+x_0 S}}(k) \ge \sum_{k=0}^{J} h_{s/\tilde{J}}(k)$$
$$= \deg \tilde{J} = r$$

 \Rightarrow wr(a) \geq s' \geq r

7 Complexity of Matrix multiplication

Question. How many multiplications in *K* does one need to compute $A \cdot B$ for $A, B \in K^{n \times n}$ **Example 7.1** (Stransen, 1989). n = 1. Let $C = (c_{ij})$. Set

 $I = (a_{11} + a_{22})(b_{11} + b_{22})$ $II = (a_{21} + a_{22})b_{11}$ $V = (a_{11} + a_{22})(b_{22})$ $VI = (-a_{12} + a_{22})(b_{12} + b_{12})$ $VII = (a_{12} - a_{22})(b_{21} + b_{22})$ $VII = (a_{12} - a_{22})(b_{21} + b_{22})$ $VII = (a_{12} - a_{22})(b_{21} + b_{22})$

 $c_{11} = I + IV - V + VII$ $c_{21} = II + IV$ $c_{12} = II + V$ $c_{22} = I - II + III + VI$

Remark 7.2. This is optimal. (Uimogradov, 1971)

Definition 7.3. The exponenet of matrix multiplication

 $\omega = \inf \{ \tau \in \mathbb{R} : \text{computing the product of two } n \times n \text{ matrices takes } O(n^{\tau}) \text{ multiplications} \}$

Theorem 7.4 (Strassen, 1969). $\omega \le \log_2 7 \approx 2.81$

Current record: $\omega < 2.374$ (Gall, 2014)

7.5. Conjecture $\omega = 2$.

If U, V, W are *k*-vector spaces with bases $\{u_i\}, \{v_j\}, \{w_k\}$, then the tensor product $u \otimes v \otimes w$ is a *k* vector space with basis $\{u_i \otimes v_j \otimes w_k\}$...

The rank of a tensor $T \in U \otimes V \otimes W$ is

$$\operatorname{rk}(T) := \min\left\{r : T = \sum_{I=1}^{r} (u_i \otimes v_j \otimes w_k)_I\right\}$$

for any $u_i, v_i, w_k \in U, V, W$ respectively.

Under this isomorphism the map

 $U \otimes V \to W$ $A \otimes B \mapsto A \cdot B$

 $M_n = \sum_{i,j,k=1}^r E_{ij} \otimes E_{jk} \otimes E_{ki}$ where $E_{ij} \in K^{n \times n}$ has a 1 in position (i, j) and all other entries 0. **Theorem 7.6** (Strassen, 1983). $\omega = \inf \{\tau \in \mathbb{R} : \operatorname{rank}(M_n) = O(n^\tau) \}$

The symmetrization of M_n gives a symmetric tensor corresponding to the polynomial

$$f_n = \operatorname{trace}(X_{n \times n}^3)$$

 $hom(U \otimes V, W) \cong U \otimes V \otimes W$ fofin dim space

where $X = (\underbrace{x_{i,j}}_{\text{variable}})_{i,j} \in [n]$ $\dim v = n$ $v_1 \otimes v_2 \rightsquigarrow v_1 \otimes v_2 + v_1 \oplus v_3 + \dots + v_{n-1} \oplus v_n$ \uparrow $1_{x_1x_2}$ $= \sum_{i,j,k=1}^n x_{ij}x_{jk}x_{ki} \text{ homo. of deg 3}$

Theorem 7.7 (Chiantini, Ikenmeyer, Landsberg, Ottarini, 2018). $\omega = \inf \{ \tau \in \mathbb{R} : \operatorname{wr}(f_n) = O(n^{\tau}) \}$