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Abstract

Most of the systems occurring in nature are chaotic i.e. changing initial conditions can lead to

vast changes in future. In this document we study two chaotic systems: The Logistic Map and The

Lorenz Attractor. The �rst shows how chaos can appear even in simple systems. We summarize

and visualize how changing parameters causes this system to show chaotic behavior. Next we plot

the Lorenz System and observe chaotic behavior beyond certain parameter values. Rather than a

rigorous explanation of this phenomenon we opted a more visual and programming heavy treatment.

1 Some background

For want of a nail, the shoe was lost;

For want of a shoe, the horse was lost;

For want of a horse, the rider was lost;

For want of a rider, the battle was lost;

For want of a battle, the kingdom was lost!

Anonymous

Dynamics is the study of time evolutionary processes and the corresponding system of equations
is known as a dynamical system. Such evolutionary processes may have another property called
determinacy: if the entire future and past can be determined from the present state uniquely its said to
be a deterministic system, if this determination is not unique its called semi-deterministic system and if
no such determination exists then its called non-deterministic system. The evolutionary process may also
be either a continuous time process (given by di�erential equations) or a discrete time process (given by
di�erence equations). If the evolution is governed by a linear di�erential equation(s) (continuous time)
or di�erence equation(s) (discrete time) the dynamical system is called a linear dynamical system. If the
evolution is governed by a non-linear di�erential equation(s) or di�erence equation(s) we call the system
a non-linear dynamical system.

A phase space for a dynamical system is hypothetical space in which all possible states of a system
evolve. For example consider the dynamical system

dxi
dt

= fi(x1, . . . , xn); i ∈ {1, 2, . . . , n} (1)

Here xi's depend on parameter t, then we consider an abstract space with coordinates (x1, · · · , xn). The
solution points (x1(t), · · · , xn(t)) of the di�erential equation(s) correspond to a path in this space as t
varies. These solution paths are called trajectories or orbits and this space is called phase space. A
�xed point (or equilibrium point) for the above system is (x∗1, . . . , x

∗
n) such that fi(x

∗
1, . . . , x

∗
n) =
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0 for all i ∈ {1, . . . , n}. Fixed points give a simple and important form of orbit. We say that the
�xed/equilibrium point is a source when nearby solutions tend away from it. The equilibrium point is
a sink when nearby solutions tend toward it. Sources are often called unstable �xed points and sinks
stable.

Chaos is aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence
on initial conditions. By aperiodic long-term behavior, we mean that the orbits don't end up either
periodic or circling around some equilibrium point. An attractor is an invariant set to which all nearby
orbits converge. They are the sets that one "sees" when a dynamical system is iterated on a computer.
A strange attractor is an attractor that exhibits sensitive dependence on initial conditions. We shall
see below two dynamical systems that su�er chaos, they will help to "see" these de�nitions better.

2 The Logistic Map

As far as the laws of mathematics refer to

reality, they are not certain, and as far as

they are certain, they do not refer to reality.

Albert Einstein

A simple model for population growth of organisms is

dP

dt
= rP

where P (t) is population at time t and r > 0 is growth parameter. Solving it one sees that the model
predicts exponential growth (P (t) = P0e

rt, P0 is population at t = 0). Clearly this model implies

overpopulation and what not. Population biologists tried tackling this by assuming that P ′

P decreases
when P becomes large enough, but this creates an additional problem that when population is above
certain capacity (say C is the population at which they exhaust all resources and are unable to develop

further) the growth rate becomes negative. Pierre Verhulst in 1838 suggested that P ′

P should decrease
linearly with P . Thus the logistic model of population

dP

dt
= rP

(
1− P

C

)
was born. It describes the self-limiting growth of a biological population pretty well.

In 1976 Robert May showed that even simple non-linear maps can show chaotic behavior using logistic
maps, a discrete analog of the logistic equation above.

xn+1 = rxn(1− xn) (2)

where xn ≥ 0 is a dimensionless measure of population in nth generation and r ≥ 0 is the intrinsic growth
rate. We will restrict r in [0, 4] as then (2) maps the interval [0, 1] onto itself. For other values its not
very interesting, as it can be shown that if xn > 1 for some n then future iterations will diverge to −∞
which means that the population goes extinct (not a very useful thing to study we guess). [Suppose
xn = 1+ δ for some δ > 0 then xn+1 − xn = −(r + δ)(1 + δ) < −r thus sequence decreases by at least r
every turn.]

The logistic map becomes a chaotic system for certain values of the parameter r. We shall state
(without proofs) some results about convergence of the population with logistic growth for various ranges
of parameter.

• For r < 1, we get xn → 0 as n→∞.

• For 1 < r < 3, the population grows and eventually reaches a non-zero steady state.

• At somewhere above r = 3, a period 2-cycle is born i.e. a large population in one generation
is followed by a smaller one in next and this repeats. For example when r = 3.2 the long-term
behavior of the orbit is to get pulled to an attracting cycle of period 2. Increasing r more will give
period 2n cycles in the xn vs n plot (for that parameter). If rn denotes the parameter value at
which the �rst occurrence of a period-2n cycle happens, then using numerical computations we see
that limn→∞ rn = r∞ = 3.57 . . .
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• For r∞ < r < 4, in words of Robert May, "What the Christ happens for r > r∞?". Once we plot
the bifurcation diagram we will have a great picture of the situation. We will be able to see the
chaotic behavior above r∞. This marks the onset of chaos.

2.1 Bifurcation

In context of dynamical systems, bifurcation theory studies changes in orbit, number of solutions to the
system, etc., when the parameter(s) are changed. A bifurcation diagram provides a way to see these
bifurcations and summarizes in one single picture all the possible stable, long-term behaviors of the
system. It shows the values visited or approached asymptotically as the bifurcation parameter(s) are
changed.

In order to plot the bifurcation diagram for the logistic map, we follow these steps: Start with r = 0
and set initial population value x0 = 1

2 . Iterate the map 10000 times and plot the last 20 values, and
discard the rest. Then increase r by a small amount and repeat. The attractor (for Logistic Map) for
any value of r can be seen by drawing a line at that r.

Figure 1: Bifurcation diagram of the Logistic Map
[
Refer to Code File - 1

]
As can be seen in Figure 1, the region 3 < r < 4 is such an intricate one. As we already noted the

periods start doubling as r increases beyond 3.

Figure 2: Emergence of order from Chaos
[
Refer to Code File - 2

]
We expect them to go increasing but something strange happens. At around 3.57 the branching

becomes chaotic (after continuous 'doubling') and we see almost solid vertical lines. As we go beyond

3



this r∞, one can see periodic "windows" among these dotted vertical lines. For example at around 3.83
a window of period 3 opens up [See Fig. 2 1] (the blank space that appears around 3.8, note that there
are three branches over there which go on coupling). But after that again a 'doubling' in period starts
and we enter yet another region of chaos after sometime. It can be shown that there are in�nitely many
such periodic openings. There is indeed a pattern to the appearance of these windows which we are
unable to discuss (look up Sharkovsky Ordering) that's why we see the pitchfork motif being repeated.
The bifurcation diagram of the Logistic map is indeed a diagram of remarkable complexity, one can see
more and more structure upon zooming in.

Logistic map is indeed a chaotic system as even slight changes in initial conditions, say if we plot xn
vs n plots (r = 3.9) with one starting at x0 = 0.5 and another at x0 = 0.5000001 the orbits start nearby
but soon diverge by a lot as can be seen in the picture below.

Figure 3: Sensitivity to initial conditions in the Logistic Map
[
Refer to Code File - 3

]
2.2 Logistic Map and SAGE

Explanation of code for Fig. 1 To plot the bifurcation diagram we start by de�ning three functions:

chaos(r,x) - In this function, x is iterated according to the law xn = rxn−1(1 − xn−1). We send the last 20
values of x to the array l after 10000 iterations.

plot(r,l) - For a given value of r this plots the values in l. We use list_plot() to plot the points from l.
We initialize the plot p by plotting the points (0,l[0]). Then we add to this plot all the points
from the array l using p+=list_plot([(r,l[i])]).

chaos2(x) - The function takes x as input, initial population and for each value of r between 0 and 4 (both
included) in step values of 1

1000 . For each r in the loop we call the functions chaos(r,x) and
plot(r,l) to plot the values. All the plots throughout the range of r are combined and returned.

Explanation of code for Fig. 3 In this plot we try to see the di�erence when we start with two
slightly di�erent population values. We implement the previously de�ned chaos(r,x) function for r=3.9.
We execute the plot by using the in-built SAGE function: p=list_plot(l,plotjoined=True,color='red')
to get a continuous plot.

1This was plotted by the authors themselves and not copied from the web; in-fact all images are produced by the

authors!
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3 Lorenz System

If the single �ap of a butter�y's wings can be

instrumental in generating a tornado, so also

can all the previous and subsequent �aps of

its wings, as can the �aps of the wings of

millions of other butter�ies, not to mention

the activities of innumerable other more

powerful creatures including our own species

Edward Lorenz

In 1963 Edward Lorenz, a professor at MIT attempted to set up a system of di�erential equations that
would explain (to some extent) the unpredictable nature of weather. He used a very simpli�ed model of
�uid convention which of course was far from reality but ended up giving unexpected results. He looked
at a two-dimensional �uid cell which was heated from below and cooled from above. The equations for
this system are themselves very complicated so he made vastly simplifying assumptions about it. He was
led to the following three-dimensional system of di�erential equations in three parameters.

dx

dt
= σ(y − x) (3)

dy

dt
= x(ρ− z)− y (4)

dz

dt
= xy − βz (5)

The parameters σ, ρ, β are positive real parameters. σ and ρ are proportional to the Prandtl number
and Rayleigh number respectively. The system is non-linear (presence of xz and xy), non-periodic and
deterministic. Also if (x, y, z) is a solution then so is (−x,−y, z).

This system has three �xed points the origin, Q+ = (
√
β(ρ− 1),

√
β(ρ− 1), ρ − 1) and Q− =

(−
√
β(ρ− 1),−

√
β(ρ− 1), ρ − 1) (can be seen by simple algebra). When ρ < 1 it can be shown that

the system has only O (origin) as a �xed point. And when 1 < ρ < ρ∗ := σ
(
σ+β+3
σ−β−1

)
then both Q±

are sinks. Beyond ρ∗ a special kind of bifurcation happens (called Hopf Bifurcation) where these stable
�xed points lose their stability. But the trajectories don't diverge to in�nity with time! The orbits are
bounded and non-periodic.

Lorenz system is indeed chaotic as we will see now. Lorenz considered the parameters σ = 10, ρ =
28, β = 8

3 (clearly ρ > ρ∗). We start with initial points (x, y, z) = (0, 1, 1). The trajectory starts and
swings directly into one of the �xed points Q± and then starts spiraling outwards and goes to the other
�xed point, again takes some rounds and goes back to the previous one and repeats. The number of
circuits it takes around either of these points is in fact random! This gives the trajectory in the phase
space the look of butter�y wings. The orbits indeed stay in this shape (for any initial condition) hence
its an attractor, but the motion along the attractor is chaotic. This is called the Lorenz attractor, and is
a strange attractor (see end of this section). This system is sensitive to initial conditions, say if we plot
with initial conditions (x, y, z) = (0.2, 1, 1) although in beginning they will give close enough orbits, after
some time they will be signi�cantly di�erent. So it's not really possible to make accurate predictions
about the future of Lorenz equations. One can be certain that the orbit will remain on the attractor,
even though one is very uncertain what exact path the orbit will follow as it weaves its way across the
attractor.
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Figure 4: Sensitivity to initial conditions in Lorenz Attractor: The di�erent colors mark di�erent initial
values of x(0)

[
Refer to Code File - 4

]
Below we have plotted the attractor for σ = 10, ρ = 28, β = 8

3 .

Figure 5: Lorenz Attractor with fewer time
points

[
Refer to Code File - 5

] Figure 6: Lorenz Attractor with more time
points; plotted with time di�erence 0.005[
Refer to Code File - 5

]
We mentioned that the Lorenz equations are an over-simpli�ed version of weather models. But they

are not entirely useless from practical point of view. H. Haken derived the Lorenz equations in 1975
while studying the problem of irregular spiking in lasers, Edgar Knobloch in 1981 derived it from disc
dynamos, etc.

We mentioned that Lorenz attractor is a strange attractor, it's no easy thing to show. It was Stepehen
Smale's 14th Problem on his list of unsolved problems. Mathematicians lacked a rigorous proof that
exact solutions of the Lorenz equations will resemble the shape generated above, and they also could not
prove that its a strange attractor (or that even if it's chaotic!). It was one of the milestones in history
of dynamical systems when Warwick Tucker in 2002 showed that Lorenz system is indeed a strange
attractor. His paper was titled "The Lorenz attractor exists".
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3.1 Lorenz Attractor and SAGE

Explanation of code for Lorenz Attractor For solving the Lorenz system of di�erential equations
we use the in-built SAGE command:
sage.calculus.desolvers.desolve_odeint(des, ics, times, dvars, rtol=None, atol=None)

which solves numerically a system of �rst-order ordinary di�erential equations using odeint from scipy.integrate

module.
We take a look at the parameters we have used:

des - right hand sides of the system is given by lorenz=[sigma*(y-x),x*(rho-z)-y,x*y-beta*z], a
list.

ics - initial conditions which we are taking as 0, 1, 1 for x, y, z respectively.

times - a sequence of time points in which the solution must be found. We are working in time range
between 0 and 50(both included) with di�erence between any two time points being 0.005.

dvars - the dependent variables in the same order as des,[x,y,z].

rtol, atol - The input parameters rtol and atol determine the error control performed by the solver. The
solver will control the vector e, of estimated local errors in y, according to an inequality of the
form: max-norm of e

ewt
≤ 1, where ewt is a vector of positive error weights computed as: ewt =

rtol× abs(y)+ atol. rtol and atol can be either vectors of the same length as y or scalars. We
have set rtol and atol as e−13 and e−14 respectively.

Explanation of code for Fig. 4 The output is a numpy.ndarray with the solution of the system
at each time in times, which is stored in sol. To access the values of x, y, z from the array sol we
de�ne x=sol[:,0], y=sol[:,1], z=sol[:,2] where sol[:,i] gives us the ith column of the array.
The parameters of the di�erential equation σ, ρ, β are taken as inputs using the sliders.

Plotting the system: We will use list_plot to plot the points from x,y,z. We initialize the plot p
by plotting the points x[0], y[0], z[0]. Then we add to this plot all the points from the array sol using
p+=list_plot([(x[i],y[i],z[i])],color='black').

References

[1] Wikipedia contributors, "Logistic map,"Wikipedia, The Free Encyclopedia, https://en.wikipedia.
org/wiki/Logistic_map.

[2] Wikipedia contributors, "Lorenz system," Wikipedia, The Free Encyclopedia, https://en.

wikipedia.org/wiki/Lorenz_system.

[3] Strogatz, Steven H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chem-

istry, and Engineering. CRC Press, 2015.

[4] Boeing, Geo�, Chaos Theory and the Logistic Map, https://geoffboeing.com/2015/03/

chaos-theory-logistic-map/.

[5] SAGE Documentation, 2D Plotting, http://doc.sagemath.org/html/en/reference/plotting/

sage/plot/plot.html.

[6] SAGE Documentation, Solving ordinary di�erential equations, http://doc.sagemath.org/html/

en/reference/calculus/sage/calculus/desolvers.html.

7

https://en.wikipedia.org/wiki/Logistic_map
https://en.wikipedia.org/wiki/Logistic_map
https://en.wikipedia.org/wiki/Lorenz_system
https://en.wikipedia.org/wiki/Lorenz_system
https://geoffboeing.com/2015/03/chaos-theory-logistic-map/
https://geoffboeing.com/2015/03/chaos-theory-logistic-map/
http://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot.html
http://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot.html
http://doc.sagemath.org/html/en/reference/calculus/sage/calculus/desolvers.html
http://doc.sagemath.org/html/en/reference/calculus/sage/calculus/desolvers.html

	Some background
	The Logistic Map
	Bifurcation
	Logistic Map and SAGE

	Lorenz System
	Lorenz Attractor and SAGE

	References

