Serre Spectral Sequences
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The best way to learn spectral sequences is through calculating a lot of examples.
Here I elaborate on a few examples from Hatcher’s note

Theorem. Let F — X — B be a fibration with B path connected . If m(B) acts trivially on
H.(F;G), then there is a spectral sequence

E} , = Hy(B; Hy(F;G)) = H,(X;G)

The convergence is the usual strong convergence. So the stable terms E7,_, are isomorphic
to the successive quotients FP /FP™ in a filtration {F'} of H,(X;G) (This notion of convergence
is called as strong convergence).

Example 1. We calculate the homology of K(Z,2). Note that CP® is a K(Z,2) space.
Consider the pathspace fibration F — P — B where B is a K(Z,2)and P is the space of paths
in B starting at the basepoint. So P is contractible and F = K(Z,1). B is simply connected
so we can apply Serre specseq on the fibration. So P is contractible and F = K(Z,1). B is
simply connected so we can apply Serre specseq on the fibraton. hi(F;Z) = Z for i = 0,1 and
0 otherwise. This gives us the E* page:
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ds,ds, -+ = 0 as they go upward at least 2 rows. So we have E* = E* = ... = 0o except
Z at (0,0) position which survives till E*. This gives that d, must be isomorhism except
for dy : Z(at(0,0)) — 0. This is because any element in the kernel or cokernel of one of
these differntials would give a non-zero entry in the E* page. Inductively we can finish our
argument. H;(B) = 0 from isomorphiscm from (1,0) to the 0 at (—1,1). Similarly Hy(B) = Z.
and H;(B) = H;_,(B) for i > 2.



Example 2. We now calculate the homology of QS" by looking at the fibration QS* - P —
S". By application of Whitehead’s theorem , QS' has contractible components. So assume
n>2, so S" is simply connected. We have it’s E* page as in the figure.
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As before the E* page has 7 at (0,0). Thee only non0O-zero differntial is d,. This implies
we have E? = E* = ... = E" and E""! = ... = E®. So the d, must be isomorphisms, except the
map d, : Z(at(0,0)) — 0. It follows that H,(QS";7Z) = Z for i =0 mod n—1 and 0 otherwise.

Remember to hydrate 0.

Example 3. 1 > A - B - C — 1 be a shortexseq of groups. Look at the induced map
K(B,1) » K(C,1). Converting this map to a fibration, we get K(A,1) - K(B,1) —» K(C,1) a
fiber sequence. Consider the fibration asssociated to the sequence 0 - Z, - Z, - Z, — 0.
RP* is a K(Z,2) space and hence H"(RP*;Z) is Z, or 0 for n > 0 and Hy = Z.So m; acts
trivially. (Z, — Aut(Z,) gives only the trivial action.)

If the fibration has K(Z,,1) x K(Z,,1) as total space, from Kunneth formula we can get that
all differentials are zero in E* page.

So we look at the fibration with total space K(Z4.1). The terms along the diagonal p+q =n
are the successive quotients for some filtration of H,(K(Z4,1); Z) which is Z, if n is odd and

0 if n is even. So all the Z, in the even diagonals must become 0 and in odd diagonals all Z,
but two must become 0 - E¢, and E3,_,.
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The n =1 diagonal has no nontrivial differential, so both Z, survives till E*.
The Z, in the n = 2 diagonal must disapper and this can happen only if it is hit by diff from
Z, at (3,0). This leaves two Z,’s in n = 3 diagonal which must survive to E*, so there can
be no nonzero diff from n = 4 diagonal. This pattern continues. So we have the only terms
in the Eco page are the cirled ones in the picture of E?* page.

The Serre specseq satisfies naturality properties. Suppose we are given two fibrations
and a map between them:

F > X > B
Lk
F’ ¢ s B’

Suppose the two fibrations satisfy the same hypothesis as before, we have the following
naturality properties:

1. There are induced maps f; : E, — E; commuting with differentials, with F/*! the
map on homlogy induced by f/.

2. The map ﬂ : H.(X;G) — H. (X’;G) preserves filtrations, inducing a map on successive
quotient groups which is the map .

3. Under the isomorphisms E; =~ H, (B; H,(F;G)) and E? =~ H, (B’;H, (F’;G)) the map
fZ# corresponds to the map induced by the maps B — B and F — F’.

Consider a fibration p : X — B and a map to the identity fibration B — B. We have the
following commutative diagram:

H,(X;G) —— H,(B;G)

| iy

Eqo(X) —— E(B)

This gives a factorization of p. as the composition of the natrual surjection H,(X;G) — E,
coming form the filtration in the first fibration, followed by the lower horizontal map, an
injection. The latter map is the composition Ey(X) < EZ(X) — E.,(B) = E;,(B) whose
second map will be an isomorphism if the fiber F of the fibration X — B is path-connected.
This factorization must be equivalent to the canonical factorization H,(X;G) — Imp, <
H,(B;G)

Example 4. Consider the fibration p : K(Z,2) - K(Z,2) inducing multiplication by 2 on
5. Thus this has fiber K(Z,,1). In the E? page the differentials originating from above the
0'" row must have source or target 0, so must be trivial.
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Every diff from Z in 0*" row to Z, in upper row must be nontrivial. Since there is no Z, in
H.(K(Z,2); 7). The diff Z — Z, send generators to generators. Say 1 — 1, when this happens
Z, is killed and source Z becomes ker(Z — Z/2) which is 2Z ¢ Z. Note 2Z = Z. On the next
page we have nontrivial diff 27 = Z — Z,. THis gives 4Z C Z. This gives Ej, , = 2"Z C Z. So
p. + Hyuw(K(Z,2);2) — E5, < Hy, = Ej,,. This gives that Im(p.) < Hy(K(Z,2);Z) of index
2". So p. = p(2").



