Serre Spectral Sequences

Narendran E

The best way to learn spectral sequences is through calculating a lot of examples. Here I elaborate on a few examples from Hatcher's note

Theorem. Let $F \to X \to B$ be a fibration with B path connected. If $\pi_1(B)$ acts trivially on $H_*(F;G)$, then there is a spectral sequence

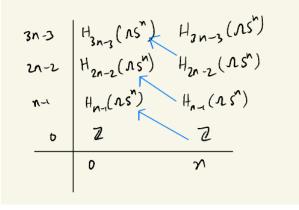
$$E_{p,q}^2 \approx H_p(B; H_q(F; G)) \implies H_n(X; G)$$

The convergence is the usual strong convergence. So the stable terms $E_{p,n-p}^{\infty}$ are isomorphic to the successive quotients F_n^p/F_n^{p-1} in a filtration $\{F_n^i\}$ of $H_n(X;G)$ (This notion of convergence is called as strong convergence).

Example 1. We calculate the homology of $K(\mathbb{Z}, 2)$. Note that $\mathbb{C}P^{\infty}$ is a $K(\mathbb{Z}, 2)$ space. Consider the pathspace fibration $F \to P \to B$ where B is a $K(\mathbb{Z}, 2)$ and P is the space of paths in B starting at the basepoint. So P is contractible and $F = K(\mathbb{Z}, 1)$. B is simply connected so we can apply Serre specseq on the fibration. So P is contractible and $F = K(\mathbb{Z}, 1)$. B is simply connected so we can apply Serre specseq on the fibraton. $h_i(F; \mathbb{Z}) = \mathbb{Z}$ for i = 0, 1 and 0 otherwise. This gives us the E^2 page:

 $d_3, d_4, \dots = 0$ as they go upward at least 2 rows. So we have $E^3 = E^4 = \dots = \infty$ except \mathbb{Z} at (0, 0) position which survives till E^{∞} . This gives that d_2 must be isomorphism except for $d_2 : \mathbb{Z}(at(0, 0)) \to 0$. This is because any element in the kernel or cokernel of one of these differntials would give a non-zero entry in the E^3 page. Inductively we can finish our argument. $H_1(B) = 0$ from isomorphism from (1, 0) to the 0 at (-1, 1). Similarly $H_2(B) \approx \mathbb{Z}$. and $H_i(B) \approx H_{i-2}(B)$ for i > 2.

Example 2. We now calculate the homology of ΩS^n by looking at the fibration $\Omega S^n \to P \to S^n$. By application of Whitehead's theorem , ΩS^1 has contractible components. So assume $n \ge 2$, so S^n is simply connected. We have it's E^2 page as in the figure.



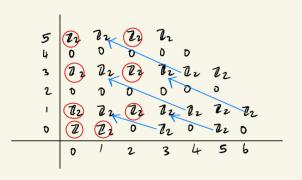
As before the E^{∞} page has \mathbb{Z} at (0,0). The only non0-zero differntial is d_n . This implies we have $E^2 = E^3 = \cdots = E^n$ and $E^{n+1} = \cdots = E^{\infty}$. So the d_n must be isomorphisms, except the map $d_n : \mathbb{Z}(at(0,0)) \to 0$. It follows that $H_i(\Omega S^n; \mathbb{Z}) = \mathbb{Z}$ for $i \cong 0 \mod n-1$ and 0 otherwise.

Remember to hydrate \mathbb{Q} .

Example 3. $1 \to A \to B \to C \to 1$ be a shortexseq of groups. Look at the induced map $K(B, 1) \to K(C, 1)$. Converting this map to a fibration, we get $K(A, 1) \to K(B, 1) \to K(C, 1)$ a fiber sequence. Consider the fibration associated to the sequence $0 \to \mathbb{Z}_2 \to \mathbb{Z}_4 \to \mathbb{Z}_2 \to 0$. $\mathbb{R}P^{\infty}$ is a $K(\mathbb{Z}, 2)$ space and hence $H^n(\mathbb{R}P^{\infty}; \mathbb{Z})$ is \mathbb{Z}_2 or 0 for n > 0 and $H_0 = \mathbb{Z}$. So π_1 acts trivially. $(\mathbb{Z}_2 \to \operatorname{Aut}(\mathbb{Z}_2)$ gives only the trivial action.)

If the fibration has $K(\mathbb{Z}_2, 1) \times K(\mathbb{Z}_2, 1)$ as total space, from Kunneth formula we can get that all differentials are zero in E^2 page.

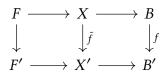
So we look at the fibration with total space $K(\mathbb{Z}_4.1)$. The terms along the diagonal p + q = n are the successive quotients for some filtration of $H_n(K(\mathbb{Z}_4, 1); \mathbb{Z})$ which is \mathbb{Z}_4 if n is odd and 0 if n is even. So all the \mathbb{Z}_2 in the even diagonals must become 0 and in odd diagonals all \mathbb{Z}_2 but two must become 0 - $E_{0,n}^{\infty}$ and $E_{2,n-2}^{\infty}$.



The n = 1 diagonal has no nontrivial differential, so both \mathbb{Z}_2 survives till E^{∞} .

The \mathbb{Z}_2 in the n = 2 diagonal must disapper and this can happen only if it is hit by diff from \mathbb{Z}_2 at (3,0). This leaves two \mathbb{Z}_2 's in n = 3 diagonal which must survive to E^{∞} , so there can be no nonzero diff from n = 4 diagonal. This pattern continues. So we have the only terms in the E^{∞} page are the cirled ones in the picture of E^2 page.

The Serre specseq satisfies naturality properties. Suppose we are given two fibrations and a map between them:



Suppose the two fibrations satisfy the same hypothesis as before, we have the following naturality properties:

- 1. There are induced maps $f_*^r : E_{p,q}^r \to E_{p,q}^{\prime r}$ commuting with differentials, with F_*^{r+1} the map on homlogy induced by f_*^r .
- 2. The map $\tilde{f}_* : H_*(X;G) \to H_*(X';G)$ preserves filtrations, inducing a map on successive quotient groups which is the map f_*^{∞} .
- 3. Under the isomorphisms $E_{p,q}^2 \approx H_p(B; H_q(F; G))$ and $E_{p,q}'^2 \approx H_p(B'; H_q(F'; G))$ the map f_*^2 corresponds to the map induced by the maps $B \to B'$ and $F \to F'$.

Consider a fibration $p : X \to B$ and a map to the identity fibration $B \to B$. We have the following commutative diagram:

This gives a factorization of p_* as the composition of the natrual surjection $H_n(X;G) \to E_{n,0}^{\infty}$ coming form the filtration in the first fibration, followed by the lower horizontal map, an injection. The latter map is the composition $E_{n,0}^{\infty}(X) \hookrightarrow E_{n,0}^2(X) \to E_{n,0}^2(B) = E_{n,0}^{\infty}(B)$ whose second map will be an isomorphism if the fiber F of the fibration $X \to B$ is path-connected. This factorization must be equivalent to the canonical factorization $H_n(X;G) \to \operatorname{Im} p_* \hookrightarrow$ $H_n(B;G)$

Example 4. Consider the fibration $p : K(\mathbb{Z}, 2) \to K(\mathbb{Z}, 2)$ inducing multiplication by 2 on π_2 . Thus this has fiber $K(\mathbb{Z}_2, 1)$. In the E^2 page the differentials originating from above the 0^{th} row must have source or target 0, so must be trivial.



Every diff from \mathbb{Z} in 0^{th} row to \mathbb{Z}_2 in upper row must be nontrivial. Since there is no \mathbb{Z}_2 in $H_*(K(\mathbb{Z}, 2); \mathbb{Z})$. The diff $\mathbb{Z} \to \mathbb{Z}_2$ send generators to generators. Say $1 \mapsto 1$, when this happens \mathbb{Z}_2 is killed and source \mathbb{Z} becomes $\ker(\mathbb{Z} \to \mathbb{Z}/2)$ which is $2\mathbb{Z} \subset \mathbb{Z}$. Note $2\mathbb{Z} \simeq \mathbb{Z}$. On the next page we have nontrivial diff $2\mathbb{Z} \simeq \mathbb{Z} \to \mathbb{Z}_2$. This gives $4\mathbb{Z} \subset \mathbb{Z}$. This gives $E_{2n,0}^{\infty} = 2^n \mathbb{Z} \subset \mathbb{Z}$. So $p_* : H_{2n}(K(\mathbb{Z}, 2); \mathbb{Z}) \to E_{2n,0}^{\infty} \hookrightarrow H_{2n} = E_{2n,0}^2$. This gives that $Im(p_*) \leq H_{2n}(K(\mathbb{Z}, 2); \mathbb{Z})$ of index 2^n . So $p_* = \mu(2^n)$.