
Serre Spectral Sequences

Narendran E

The best way to learn spectral sequences is through calculating a lot of examples.
Here I elaborate on a few examples from Hatcher’s note

Theorem. Let 𝐹 → 𝑋 → 𝐵 be a fibration with 𝐵 path connected . If 𝜋1(𝐵) acts trivially on
𝐻∗(𝐹 ;𝐺), then there is a spectral sequence

𝐸
2

𝑝,𝑞
≈ 𝐻𝑝(𝐵;𝐻𝑞(𝐹 ;𝐺)) ⟹ 𝐻𝑛(𝑋 ;𝐺)

The convergence is the usual strong convergence. So the stable terms 𝐸∞

𝑝,𝑛−𝑝
are isomorphic

to the successive quotients 𝐹𝑝

𝑛
/𝐹

𝑝−1

𝑛
in a filtration {𝐹

𝑖

𝑛
} of 𝐻𝑛(𝑋 ;𝐺) (This notion of convergence

is called as strong convergence).

Example 1. We calculate the homology of 𝐾(Z, 2). Note that C𝑃∞ is a 𝐾(Z, 2) space.
Consider the pathspace fibration 𝐹 → 𝑃 → 𝐵 where 𝐵 is a 𝐾(Z, 2)and 𝑃 is the space of paths
in 𝐵 starting at the basepoint. So 𝑃 is contractible and 𝐹 = 𝐾(Z, 1). 𝐵 is simply connected
so we can apply Serre specseq on the fibration. So 𝑃 is contractible and 𝐹 = 𝐾(Z, 1). 𝐵 is
simply connected so we can apply Serre specseq on the fibraton. ℎ𝑖(𝐹 ;Z) = Z for 𝑖 = 0, 1 and
0 otherwise. This gives us the 𝐸

2 page:

𝑑3, 𝑑4,⋯ = 0 as they go upward at least 2 rows. So we have 𝐸
3
= 𝐸

4
= ⋯ = ∞ except

Z at (0, 0) position which survives till 𝐸∞. This gives that 𝑑2 must be isomorhism except
for 𝑑2 ∶ Z(𝑎𝑡(0, 0)) → 0. This is because any element in the kernel or cokernel of one of
these differntials would give a non-zero entry in the 𝐸

3 page. Inductively we can finish our
argument. 𝐻1(𝐵) = 0 from isomorphiscm from (1, 0) to the 0 at (−1, 1). Similarly 𝐻2(𝐵) ≈ Z.
and 𝐻𝑖(𝐵) ≈ 𝐻𝑖−2(𝐵) for 𝑖 > 2.
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Example 2. We now calculate the homology of Ω𝑆𝑛 by looking at the fibration Ω𝑆
𝑛
→ 𝑃 →

𝑆
𝑛. By application of Whitehead’s theorem , Ω𝑆1 has contractible components. So assume
𝑛 ≥ 2, so 𝑆

𝑛 is simply connected. We have it’s 𝐸2 page as in the figure.

As before the 𝐸
∞ page has Z at (0, 0). Thee only non0-zero differntial is 𝑑𝑛. This implies

we have 𝐸
2
= 𝐸

3
= ⋯ = 𝐸

𝑛 and 𝐸
𝑛+1

= ⋯ = 𝐸
∞. So the 𝑑𝑛 must be isomorphisms, except the

map 𝑑𝑛 ∶ Z(𝑎𝑡(0, 0)) → 0. It follows that 𝐻𝑖(Ω𝑆
𝑛
;Z) = Z for 𝑖 ≅ 0 mod 𝑛 − 1 and 0 otherwise.

Remember to hydrate .

Example 3. 1 → 𝐴 → 𝐵 → 𝐶 → 1 be a shortexseq of groups. Look at the induced map
𝐾(𝐵, 1) → 𝐾(𝐶, 1). Converting this map to a fibration, we get 𝐾(𝐴, 1) → 𝐾(𝐵, 1) → 𝐾(𝐶, 1) a
fiber sequence. Consider the fibration asssociated to the sequence 0 → Z2 → Z4 → Z2 → 0.
R𝑃

∞ is a 𝐾(Z, 2) space and hence 𝐻
𝑛
(R𝑃

∞
;Z) is Z2 or 0 for 𝑛 > 0 and 𝐻0 = Z.So 𝜋1 acts

trivially. (Z2 → Aut(Z2) gives only the trivial action.)
If the fibration has 𝐾(Z2, 1) × 𝐾(Z2, 1) as total space, from Kunneth formula we can get that
all differentials are zero in 𝐸

2 page.
So we look at the fibration with total space 𝐾(Z4.1). The terms along the diagonal 𝑝 + 𝑞 = 𝑛

are the successive quotients for some filtration of 𝐻𝑛(𝐾(Z4, 1);Z) which is Z4 if 𝑛 is odd and
0 if 𝑛 is even. So all the Z2 in the even diagonals must become 0 and in odd diagonals all Z2

but two must become 0 - 𝐸∞

0,𝑛
and 𝐸

∞

2,𝑛−2
.
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The 𝑛 = 1 diagonal has no nontrivial differential, so both Z2 survives till 𝐸
∞.

The Z2 in the 𝑛 = 2 diagonal must disapper and this can happen only if it is hit by diff from
Z2 at (3, 0). This leaves two Z2’s in 𝑛 = 3 diagonal which must survive to 𝐸

∞, so there can
be no nonzero diff from 𝑛 = 4 diagonal. This pattern continues. So we have the only terms
in the 𝐸∞ page are the cirled ones in the picture of 𝐸2 page.

The Serre specseq satisfies naturality properties. Suppose we are given two fibrations
and a map between them:

𝐹 𝑋 𝐵

𝐹
′

𝑋
′

𝐵
′

̃
𝑓 𝑓

Suppose the two fibrations satisfy the same hypothesis as before, we have the following
naturality properties:

1. There are induced maps 𝑓
𝑟

∗
∶ 𝐸

𝑟

𝑝,𝑞
→ 𝐸

′𝑟

𝑝,𝑞
commuting with differentials, with 𝐹

𝑟+1

∗
the

map on homlogy induced by 𝑓
𝑟

∗
.

2. The map ̃
𝑓∗ ∶ 𝐻∗(𝑋 ;𝐺) → 𝐻∗ (𝑋

′
;𝐺) preserves filtrations, inducing a map on successive

quotient groups which is the map 𝑓
∞

∗
.

3. Under the isomorphisms 𝐸
2

𝑝,𝑞
≈ 𝐻𝑝 (𝐵;𝐻𝑞(𝐹 ;𝐺)) and 𝐸

′2

𝑝,𝑞
≈ 𝐻𝑝 (𝐵

′
;𝐻𝑞 (𝐹

′
;𝐺)) the map

𝑓
2

∗
corresponds to the map induced by the maps 𝐵 → 𝐵

′ and 𝐹 → 𝐹
′.

Consider a fibration 𝑝 ∶ 𝑋 → 𝐵 and a map to the identity fibration 𝐵 → 𝐵. We have the
following commutative diagram:

𝐻𝑛(𝑋 ;𝐺) 𝐻𝑛(𝐵;𝐺)

𝐸
∞

𝑛,0
(𝑋 ) 𝐸

∞

𝑛,0
(𝐵)

𝑝∗

=

This gives a factorization of 𝑝∗ as the composition of the natrual surjection 𝐻𝑛(𝑋 ;𝐺) → 𝐸
∞

𝑛,0

coming form the filtration in the first fibration, followed by the lower horizontal map, an
injection. The latter map is the composition 𝐸

∞

𝑛,0
(𝑋 ) ↪ 𝐸

2

𝑛,0
(𝑋 ) → 𝐸

2

𝑛,0
(𝐵) = 𝐸

∞

𝑛,0
(𝐵) whose

second map will be an isomorphism if the fiber 𝐹 of the fibration 𝑋 → 𝐵 is path-connected.
This factorization must be equivalent to the canonical factorization 𝐻𝑛(𝑋 ;𝐺) → Im 𝑝∗ ↪

𝐻𝑛(𝐵;𝐺)

Example 4. Consider the fibration 𝑝 ∶ 𝐾(Z, 2) → 𝐾(Z, 2) inducing multiplication by 2 on
𝜋2. Thus this has fiber 𝐾(Z2, 1). In the 𝐸

2 page the differentials originating from above the
0
th row must have source or target 0, so must be trivial.
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Every diff from Z in 0
th row to Z2 in upper row must be nontrivial. Since there is no Z2 in

𝐻∗(𝐾(Z, 2);Z). The diff Z → 𝑍2 send generators to generators. Say 1 ↦ 1, when this happens
Z2 is killed and source Z becomes ker(Z → Z/2) which is 2Z ⊂ Z. Note 2Z ≃ Z. On the next
page we have nontrivial diff 2Z ≃ Z → Z2. THis gives 4Z ⊂ Z. This gives 𝐸∞

2𝑛,0
= 2

𝑛
Z ⊂ Z. So

𝑝∗ ∶ 𝐻2𝑛(𝐾(Z, 2);Z) → 𝐸
∞

2𝑛,0
↪−→ 𝐻2𝑛 = 𝐸

2

2𝑛,0
. This gives that 𝐼𝑚(𝑝∗) ≤ 𝐻2𝑛(𝐾(Z, 2);Z) of index

2
𝑛. So 𝑝∗ = 𝜇(2

𝑛
).
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