Spectral sequences

Naren

Our basic goal: Calculate H^* where this is usually a graded *R*- module or *k*-algebra. We will mainly look at it in the topological setting. So H^* for us would be homology or cohomology rings.

Long exact sequence coming from short exact sequence of (co)chain copmolexes in homology is a fundamental tool for computing (co)homology. One can consider filtered chain complexes coming from a filtration of a topological space. There is a generalization of a long exact sequence called spectral sequence that is a powerful tool for computing homology of a chain complex. We begin with looking at the basic definitions.

Definiton. A spectral sequence is the data of

- a sequence of bigraded objects $\{E_r^{s,t}\}$ with $r \in \mathbb{N}$
- differentials $d_r: E_r \to E_r$ that satisfy $d_r^2 = 0$

and of bidegree (-r, r - 1), in which case it is of homological type, or (r, 1 - r), in which case it is of cohomological type. In addition, we require

$$E_{r+1}^{s,t} \cong \ker\left(d_r: E_r^{p,q} \to E_r^{p+r,q-r+1}\right) / \operatorname{im}\left(d_r: E^{p-r,q+r-1} \to E_r^{p,q}\right)$$

in the case of cohomology, and the corresponding condition with degrees negated for homology.

spectral sequences are imagined as a book with pages indexed by *r* containing an integer lattice with $E_r^{*,*}$ at each point of the lattice. We will mostly consider sseq with $E_r^{p,q} - 0$ for p, q < 0. These are first quadrant spectral sequences. They usually look like:

The next question we would like to answer is "How do spectral sequences arise?"

Exact couples are a general source of sseq. An exact couple $C = \langle D, E; i, j, k \rangle$ where E, D are modules, is a diagram:

where ker $j = \operatorname{im} i$, ker $= \operatorname{im} j$, ker $i = \operatorname{Im} k$. $d = jk : E \to E$ then $d^2 = 0$. Construct $C' = \langle D', E'; i', j', k' \rangle$ by $D' = i(D), E' = H_*(E; d), i' = |i_{A'}, j'[ia] = [ja], k'[e] = [ke].$ *C'* is also a derived couple and similarly we define C^r . $\{E^r, d^r\}$ gives terms of spectral sequence. An unenrolled exact couple is a diagram of abelian groups of the form

$$\cdots \longrightarrow D^{s+1,\cdot} \xrightarrow{i} D^{s,\cdot} \longrightarrow D^{s-1,\cdot} \longrightarrow \cdots$$

$$\downarrow^{s+1,\cdot} \qquad \downarrow^{j} \qquad \downarrow^{s} \qquad \downarrow^{s-1,\cdot} \qquad$$

where each triangle is a rolled up long exact sequence of the form

$$\cdots \to D^{s+1,t+1} \xrightarrow{i} D^{s,t} \to E^{s,t} \to D^{s+1,t} \to \cdots$$

It can be completely unenrolled to get

We can write $D = \oplus D^{*,*}$ and $E = \oplus E^{*,*}$ to get an exact couple

Filtered chain complexes give rise to exact couples and hence spectral sequences. Let $A = \mathbb{Z}$ graded complex of modules. Suppose we have an increasing filtration

$$\cdots \subset F_{p-1}A_* \subset F_pA_* \subset \cdots \subset A_*$$

Let Assoc(A) = $E_{p,q}^0(A) = \left(\frac{F_p A}{F_{p-1}A}\right)_{p+q}$

Suppose d is a differential and filtration on A respects the differential then

$$F_pH_*(A) = \operatorname{Im}(H_*(F_pA) \xrightarrow{\iota_*} H_*(A))$$

So $E^0H_*(A)$ is also defined. We have short exact sequence of chain complexes

$$0 \to F_{p-1} \to F_p A \to E^0_{p,q}(A) \to 0$$

indcuing a long exact seuqence

$$\cdots H_n(F_{p-1}A_*) \to H_n(F_pA_*) \to H_n(E_p^0A) \to H_{n-1}(F_{p-1}A) \to \cdots$$

Here we have $D_{p,q}^* = H_{p+q}(F_pA)$ and $E_{p,q}^* = H_{p+q}(E_p^0(A))$

Convergence

We know a filtration F^* of H^* can be collapsed into associated graded vector space, defined by $E_0^p(H^*) = F^p H^*/F^{p+1}H^*$. In the case of a locally finite graded vector space (i.e., H^n is finite dimensional for each n), H^* can be recovered up to isomorphism from the associated graded vector space by taking direct sums, i.e.,

$$H^* \cong \bigoplus_{p=0}^{\infty} E_0^p \left(H^* \right)$$

For an arbitrary graded module H^* this might be isomorphic up to an extension.

Because H^* may not be easily computed, we can take as a first approximation to H^* the associated graded vector space to some filtration of H^* . This is the target of a spectral sequence.

If the terms $E_r^{*,*}$ stabilize, i.e. for large $r, E_r = E_{r+1} = \cdots$ then we denote the common value by E_{∞} .

A spectral sequence $\{E_r, d_r\}$ is said to converge to a graded module G^* if there exists a filtration F on G^* such that

$$E_{\infty}^{p,q} \simeq \left(\frac{F_p G}{F_{p-1} G}\right)_{p+q}$$

We denote this by

 $E_r^{*,*} \implies G_*$

Most common results look like this:

Theorem. There exists a spectral sequence $\{E_r^{**}, d_r\}$ with

$$E_2^{**} \simeq$$
 "something computable"

and converging to H^* - something computable.

We consider the fibration $F \rightarrow X \rightarrow B$. We know that fibers over a path component are homotopy equivalent and we have the following action on fiber

$$L_{\gamma}: F_{\gamma(0)} \to F_{\gamma(1)}$$

for a path $\gamma : I \to B$. The map $\gamma \mapsto L_{\gamma}$ induces an action of $\pi_1(B)$ on $H_*(F)$. We are interested in trivial action, so $L_{\gamma^*} = id \forall \gamma$.

Theorem 1 (Serre spectral sequence). Let $F \to X \to B$ be a fibration with B path connected. If $\pi_1(B)$ acts trivially on $H_*(F)$ then there exists a spectral sequence $\{E_{p,a}^r, d_r\}$ with

$$E_{p,q}^2 \simeq H_p(B; H_q(F))$$

and converging to $H_*(X)$, i.e.

$$E_{p,n-p}^{\infty} \simeq \frac{F_n^p}{F_n^{p-1}}$$

for a filtration $0 \subset F_n^0 \subset \cdots \subset F_n^n = H_n(X)$.

Example 2. [Homology of $K(\mathbb{Z}, 2)$] Consider the pathspace fibration $F \to P \to B$ when $B = K(\mathbb{Z}, 2)$. *P* is contractible so $F = K(\mathbb{Z}, 1)$.

$$H_i(F;\mathbb{Z}) = \begin{cases} \mathbb{Z} & i = 0, 1\\ 0 & \text{otherwise} \end{cases}$$

So we have

$$E_{p,q}^{2} = \begin{cases} 0 & q > 2 \\ H_{p}(B) & q = 1, 2 \end{cases}$$

 d^3 , d^4 are all 0. So $E^3 = \cdots = E^{\infty}$. $P \simeq \star$ so E^{∞} page has one \mathbb{Z} at (0, 0). Hence d^2 must be isomorphism except $d^2 : E_{0,0}^2 \to 0$.

This gives us $H_1(B) = 0$ and $H_2(B) \simeq \mathbb{Z}$.

There is an analogous Serre spectral sequence in cohomology.

Theorem 3. For a fibration $F \to X \to B$ with B path connected and $\pi_1(B)$ acting trivially on $H^*(B)$ there exists a spectral sequence

$$E_2^{p,q} \simeq H^p(B; H^q(F))$$

converging to $H^*(X)$, i.e.

$$E_{\infty}^{p,n-p} \simeq \frac{F_p^n}{F_{p+1}^n}$$

for a filtration $0 \subset F_n^n \subset \cdots \subset F_0^n = H^n(X)$.

The Serre spectral sequence admits a bilinear product

$$E_r^{p,q} \times E_r^{s,t} \to E_r^{p+s,q+t} \quad \forall r \tag{1}$$

satisfying

• Each d_r is a derivation satisfying

$$d(xy) = (dx)y + (-1)^{p+q}xdy$$

So the product in eq. (1) induces a product $E_{r+1} \times E_{r+1} \rightarrow E_{r+1}$.

- The product $E_2^{p,q} \times E_2^{s,t} \to E_2^{p+s,q+t}$ is $(-1)^{qs}$ times the standard cup product $H^p(B; H^q(F)) \times H^s(B; H^t(F)) \to H^{p+s}(B; H^{q+t}(F))$
- The cup product in $H^*(X)$ restricts to maps $F_p^m \times F_s^n \to F_{p+s}^{m+n}$. These induce quotient maps $F_p^m / F_{p+1}^m \times F_s^n / F_{s+1}^n \to F_{p+s}^{m+n} / F_{p+s+1}^{m+n}$ that coincide with the products $E_{\infty}^{p,m-p} \times E_{\infty}^{s,n-s} \to E_{\infty}^{p+s,m+n-p-s}$.

Example 4. We would like to compute $H^*(\Omega S^n; \mathbb{Q})$. We will do a simpler case of n = 3, the generalization follows as a simple case-work for odd and even cases.

We have the fibration $\Omega S^3 \to PS^3 \to S^3$ that satisfies the hypothesis of Serre spectral sequence.

$$E_{p,q}^{2} = H^{p}(S^{3}; H^{q}(\Omega S^{3}; \mathbb{Q})) \implies H^{p+q}(PS^{3}; \mathbb{Q}) = \begin{cases} \mathbb{Q} & p+q=1\\ 0 & \text{otherwise} \end{cases}$$

 E^2 page: $H^*(S^3; \mathbb{Q}) = \frac{\mathbb{Q}[x]}{x^2}$ where |x| = 3 and $H^0(\Omega S^3; \mathbb{Q}) = \mathbb{Q}$.

 $E_{\infty}^{3,0}$ has to be 0. So $E_2^{3,0}$ has to vanish. This means there exists a non zero differential map in or out of $E_2^{3,0}$. This gives the only possibility $d_2 : E_2^{1,1} \to E_2^{3,0}$, but $E^{1,1} = 0$. d_r for $r \ge 4$ comes from 4th quadratn and are 0. So $d_3 : E_3^{0,2} \to E_3^{3,0}$ is non-zero and is an isomorphism. So there exists $y \in E_2^{0,2}$ such that $d_3y = x$ (There can't be more than one generator at $E^{0,2}$)

 $E_2^{0,2} = H^2(\Omega S^3; \mathbb{Q}) \simeq \mathbb{Q}[y]$. This implies $E_2^{3,2} = H^3(S^3; \mathbb{Q}) \simeq \mathbb{Q}$ So we have

 $E_2^{0,1} = 0$ because there are no differential that hit something non-zero or map from something non-zero to it. So $E_2^{0,1} = 0$.

Multiplicative structure tells us that $E_2^{3,2} = y \cdot x$.

 $\mathbb{Q}[yx]$ cannot remain till E_{∞} page. So

$$d_3: E_2^{0,4} \to \mathbb{Q}[yx]$$

is non-trivial and an isomorphism. $d_3y = x$, $d_3y^2 = 2xy$ so the above map is multiplication by 2.

$$E_2^{0,4} = \mathbb{Q}[y^2]$$

For y^2x to vansih, it is killed by $y^3 \in E_2^{0,0}$ and $d_3 = \mu(3)$.

With \mathbb{Z} coefficients we have a sequence of generators y_1, y_2, \ldots

where the following relations hold true: $y_1^2 = c_1 y_2$ for some $c_1 \in \mathbb{Z}$. $d_3(y_2) = y_1 x$ and $d_3(y_1^2) = 2y_1 x$. This implies $y_1^2 = 2y_2$, since d_3 is an isomorphism. Similarly $y_1^n = n! y_n$. We get $H^*(\Omega S^3; \mathbb{Q})$ to be a divided power algebra.