Spectral sequences

Naren

Our basic goal: Calculate H^* where this is usually a graded R - module or k -algebra. We will mainly look at it in the topological setting. So H^* for us would be homology or cohomology rings.

Long exact sequence coming from short exact sequence of (co)chain copmolexes in homology is a fundamental tool for computing (co)homology. One can consider filtered chain complexes coming from a filtration of a topological space. There is a generalization of a long exact sequence called spectral sequence that is a powerful tool for computing homology of a chain complex. We begin with looking at the basic definitions.

Defintion. *A spectral sequence is the data of*

- *a sequence of bigraded objects* ${E_r^{s,t}}$ *with* $r \in \mathbb{N}$
- differentials $d_r : E_r \to E_r$ that satisfy $d_r^2 = 0$

and of bidegree $(-r, r - 1)$ *, in which case it is of homological type, or* $(r, 1 - r)$ *, in which case it is of cohomological type. In addition, we require*

$$
E_{r+1}^{s,t} \cong \ker\left(d_r : E_r^{p,q} \to E_r^{p+r,q-r+1}\right) / \text{im}\left(d_r : E_{r,p,q+r-1} \to E_r^{p,q}\right)
$$

in the case of cohomology, and the corresponding condition with degrees negated for homology.

spectral sequences are imagined as a book with pages indexed by r containing an integer lattice with $E_r^{*,*}$ at each point of the lattice. We will mostly consider sseq with $E_r^{p,q}$ – 0 for $p, q < 0$. These are first quadrant spectral sequences. They usually look like:

The next question we would like to answer is "How do spectral sequences arise?"

Exact couples are a general source of sseq. An exact couple $C = \langle D, E; i, j, k \rangle$ where E, D are modules, is a diagram:

where ker $j = im i$, ker = im j, ker $i = Im k$. $d = jk : E \to E$ then $d^2 = 0$. Construct $C' = \langle D', E'; i', j', k' \rangle$ by $D' = i(D), E' = H_*(E; d), i' = |i_{A'}, j'[ia] = [ja], k'[e] = [ke].$

C' is also a derived couple and simlarly we define C^r. { E^r , d^r } gives terms of spectral sequence. An unenrolled exact couple is a diagram of abelian groups of the form

$$
\cdots \longrightarrow D^{s+1} \xrightarrow{i} D^{s} \longrightarrow D^{s-1} \longrightarrow \cdots
$$

$$
\downarrow \searrow \searrow \searrow
$$

$$
E^{s+1} \xrightarrow{k} E^{s} \xrightarrow{E^{s-1}} E^{s-1} \cdots
$$

where each triangle is a rolled up long exact sequence of the form

$$
\cdots \to D^{s+1,t+1} \xrightarrow{i} D^{s,t} \to E^{s,t} \to D^{s+1,t} \to \cdots
$$

It can be completely unenrolled to get

$$
\begin{array}{c}\n \longrightarrow E_{s,t+1} \longrightarrow A_{s-1,t+1} \longrightarrow E_{s-1,t+1} \longrightarrow A_{s-2,t+1} \longrightarrow E_{s-2,t+1} \longrightarrow \\
 & \downarrow \\
 \longrightarrow E_{s+1,t} \longrightarrow A_{s,t} \longrightarrow E_{s,t} \longrightarrow A_{s-1,t} \longrightarrow E_{s-1,t} \longrightarrow \\
 & \downarrow \\
 & \downarrow \\
 \longrightarrow E_{s+2,t-1} \longrightarrow A_{s+1,t-1} \longrightarrow E_{s+1,t-1} \longrightarrow A_{s,t-1} \longrightarrow E_{s,t-1} \longrightarrow\n\end{array}
$$

We can write $D = \bigoplus D^{*,*}$ and $E = \bigoplus E^{*,*}$ to get an exact couple

Filtered chain complexes give rise to exact couples and hence spectral seqeunces. Let $A = \mathbb{Z}$ graded complex of modules. Suppose we have an increasing filtration

$$
\cdots \subset F_{p-1}A_* \subset F_pA_* \subset \cdots \subset A_*
$$

Let Assoc(A) = $E_{p,q}^0(A) = \left(\frac{F_pA}{F_{p,q}}\right)$ $\overline{F_{p-1}A}$ Í $p+q$

Suppose d is a differential and filtration on A respects the differential then

$$
F_p H_*(A) = \text{Im}(H_*(F_p A) \xrightarrow{i_*} H_*(A))
$$

So $E^0H_*(A)$ is also defined. We have short exact sequence of chain complexes

$$
0 \to F_{p-1} \to F_p A \to E^0_{p,q}(A) \to 0
$$

indcuing a long exact seuqence

$$
\cdots H_n(F_{p-1}A_*) \to H_n(F_pA_*) \to H_n(E_p^0A) \to H_{n-1}(F_{p-1}A) \to \cdots
$$

Here we have $D_{p,q}^* = H_{p+q}(F_pA)$ and $E_{p,q}^* = H_{p+q}(E_p^0(A))$

Convergence

We know a filtration F^* of H^* can be collapsed into associated graded vector space, defined by E^p_{α} $_0^p(H^*) = F^p H^* / F^{p+1} H^*$. In the case of a locally finite graded vector space (i.e., H^n is finite dimensional for each *n*), H^* can be recovered up to isomorphism from the associated graded vector space by taking direct sums, i.e.,

$$
H^* \cong \bigoplus_{p=0}^{\infty} E_0^p(H^*)
$$

For an arbitrary graded module H^* this might be isomorphic up to an extension.

Because H^* may not be easily computed, we can take as a first approximation to H^* the associated graded vector space to some filtration of H^* . This is the target of a spectral sequence.

If the terms $E_r^{*,*}$ stabilize, i.e. for large r, $E_r = E_{r+1} = \cdots$ then we denote the common value by E_{∞} .

A spectral sequence $\{E_r, d_r\}$ is said to converge to a graded module G^* if there exists a filtration F on G^* such that

$$
E_{\infty}^{p,q} \simeq \left(\frac{F_p G}{F_{p-1} G}\right)_{p+q}
$$

We denote this by

 $E_r^{*,*} \implies G_*$

Most common results look like this:

Theorem. *There exists a spectral sequence* $\{E_r^{**}, d_r\}$ *with*

$$
E_2^{**} \simeq \text{``something computable''}
$$

and converging to ∗ *- something computable.*

We consider the fibration $F \to X \to B$. We know that fibers over a path component are homotopy equivalent and we have the following action on fiber

$$
L_{\gamma}: F_{\gamma(0)} \to F_{\gamma(1)}
$$

for a path $\gamma : I \to B$. The map $\gamma \mapsto L_{\gamma}$ induces an action of $\pi_1(B)$ on $H_*(F)$. We are interested in trivial action, so $L_{\gamma^*} = id \,\forall \gamma$.

Theorem 1 (**Serre spectral sequence**). Let $F \to X \to B$ be a fibration with B path connected. *If* $\pi_1(B)$ acts trivially on $H_*(F)$ then there exists a spectral sequence $\{E_{p,q}^r, d_r\}$ with

$$
E_{p,q}^2 \simeq H_p(B;H_q(F))
$$

and converging to $H_*(X)$ *, i.e.*

$$
E_{p,n-p}^{\infty} \simeq \frac{F_n^p}{F_n^{p-1}}
$$

for a filtration $0 \subset F_n^0 \subset \cdots \subset F_n^n = H_n(X)$.

Example 2. [Homology of $K(\mathbb{Z}, 2)$] Consider the pathspace fibration $F \rightarrow P \rightarrow B$ when $B = K(\mathbb{Z}, 2)$. P is contractible so $F = K(\mathbb{Z}, 1)$.

$$
H_i(F; \mathbb{Z}) = \begin{cases} \mathbb{Z} & i = 0, 1 \\ 0 & \text{otherwise} \end{cases}
$$

So we have

$$
E_{p,q}^2 = \begin{cases} 0 & q > 2\\ H_p(B) & q = 1,2 \end{cases}
$$

$$
\begin{array}{c|cccc}\n1 & \mathbb{Z} & H_1(B) & H_2(B) & H_3(B) & \cdots \\
0 & \mathbb{Z} & H_1(B) & H_2(B) & H_3(B) & \cdots \\
0 & 1 & 2 & 3 & 4\n\end{array}
$$

 d^3 , d^4 are all 0. So $E^3 = \cdots = E^{\infty}$. $P \simeq \star$ so E^{∞} page has one Z at (0,0). Hence d^2 must be isomorphism except $d^2: E^2_{0,0} \to 0$.

This gives us $H_1(B) = 0$ and $H_2(B) \simeq \mathbb{Z}$.

There is an analogous **Serre spectral sequence in cohomology**.

Theorem 3. For a fibration $F \to X \to B$ with B path connected and $\pi_1(B)$ acting trivially on H^{*}(B) there exists a spectral sequence

$$
E_2^{p,q} \simeq H^p(B;H^q(F))
$$

converging to $H^*(X)$ *, i.e.*

$$
E_{\infty}^{p,n-p} \simeq \frac{F_p^n}{F_{p+1}^n}
$$

for a filtration $0 \subset F_n^n \subset \cdots \subset F_0^n$ $_{0}^{n}=H^{n}(X).$

The Serre spectral sequence admits a bilinear product

$$
E_r^{p,q} \times E_r^{s,t} \to E_r^{p+s,q+t} \quad \forall r \tag{1}
$$

satisfying

• Each d_r is a derivation satisfying

$$
d(xy) = (dx)y + (-1)^{p+q}xdy
$$

So the product in eq. [\(1\)](#page-3-0) induces a product $E_{r+1} \times E_{r+1} \rightarrow E_{r+1}$.

- The product $E_2^{p,q}$ $E_2^{p,q} \times E_2^{s,t} \to E_2^{p+s,q+t}$ $l^{p+s,q+t}_{2}$ is $(-1)^{qs}$ times the standard cup product $H^{p}(B;H^{q}(F))\times$ $H^s(B;H^t(F)) \to H^{\overline{p}+s}(B; \overline{H}^{q+t}(F))$
- The cup product in $H^*(X)$ restricts to maps $F_p^m \times F_s^n \to F_{p+s}^{m+n}$. These induce quotient maps F_p^m/F_p^m $F_{p+1}^m \times F_s^n / F_{s+1}^n \to F_{p+s}^{m+n} / F_{p+s+1}^{m+n}$ \lim_{p+s+1} that coincide with the products $E_{\infty}^{p,m-p} \times E_{\infty}^{s,n-s}$ \rightarrow $E_{\infty}^{p+s,m+n-p-s}$.

Example 4. We would like to compute $H^*(\Omega S^n; \mathbb{Q})$. We will do a simpler case of $n = 3$, the generalization follows as a simple case-work for odd and even cases.

We have the fibration $\Omega S^3 \to PS^3 \to S^3$ that satisfies the hypothesis of Serre spectral sequence.

$$
E_{p,q}^2 = H^p(S^3; H^q(\Omega S^3; \mathbb{Q})) \implies H^{p+q}(PS^3; \mathbb{Q}) = \begin{cases} \mathbb{Q} & p+q=1\\ 0 & \text{otherwise} \end{cases}
$$

 E^2 page: $H^*(S^3; \mathbb{Q}) = \frac{\mathbb{Q}[x]}{r^2}$ $\frac{\mathbb{R}[x]}{x^2}$ where $|x| = 3$ and $H^0(\Omega S^3; \mathbb{Q}) = \mathbb{Q}$.

 $E_{\infty}^{3,0}$ has to be 0. So $E_2^{3,0}$ $2^{3,0}$ has to vanish. This means there exists a non zero differential map in or out of $E_2^{3,0}$ ^{3,0}. This gives the only possibility $d_2: E_2^{1,1} \to E_2^{3,0}$ ^{3,0}, but $E^{1,1} = 0$. d_r for $r \ge 4$ comes from 4th quadratn and are 0. So $d_3: E_3^{0,2} \to E_3^{3,0}$ $3^{3,0}$ is non-zero and is an isomorphism. So there exists $y \in E_2^{0,2}$ ^{0,2} such that $d_3y = x$ (There can't be more than one generator at $E^{0,2}$)

 $E^{0,2}_{0}$ $2^{0,2} = H^2(\Omega S^3; \mathbb{Q}) \simeq \mathbb{Q}[y]$. This implies $E_2^{3,2}$ $2^{3,2} = H^3(S^3; \mathbb{Q}) \simeq \mathbb{Q}$ So we have

 $E^{0,1}_{0}$ $2^{0,1}_{2}$ = 0 because there are no differential that hit something non-zero or map from something non-zero to it. SO $E_2^{0,1}$ $2^{0,1}=0.$

Multiplicative structure tells us that $E_2^{3,2}$ $2^{3,2} = y \cdot x.$

 $\mathbb{Q}[yx]$ cannot remain till E_{∞} page. So

$$
d_3: E_2^{0,4} \to \mathbb{Q}[yx]
$$

is non-trivial and an isomorphism. $d_3y = x$, $d_3y^2 = 2xy$ so the above map is multiplication by 2.

$$
E_2^{0,4}=\mathbb{Q}[y^2]
$$

For y^2 *x* to vansih, it is killed by $y^3 \in E_2^{0,0}$ $_{2}^{0,0}$ and $d_3 = \mu(3)$.

With $\mathbb Z$ coefficients we have a sequence of generators y_1, y_2, \ldots

where the following relations hold true: y_1^2 $i_1^2 = c_1 y_2$ for some $c_1 \in \mathbb{Z}$. $d_3(y_2) = y_1 x$ and $d_3(y_1^2)$ y_1^2 = 2y₁x. This implies y_1^2 $_1^2 = 2y_2$, since d_3 is an isomorphism. Similarly v_1^n $n_1^n = n! y_n$. We get $H^*(\Omega S^3; \mathbb{Q})$ to be a divided power algebra.