Spectral sequences

Naren

Our basic goal: Calculate H* where this is usually a graded R- module or k-algebra. We will
mainly look at it in the topological setting. So H* for us would be homology or cohomology
rings.

Long exact sequence coming from short exact sequence of (co)chain copmolexes in homology
is a fundamental tool for computing (co)homology. One can consider filtered chain complexes
coming from a filtration of a topological space. There is a generalization of a long exact
sequence called spectral sequence that is a powerful tool for computing homology of a chain
complex. We begin with looking at the basic definitions.

Defintion. A spectral sequence is the data of
* a sequence of bigraded objects {Eﬁt} withr € N
* differentials d, : E, — E, that satisfy df =0
and of bidegree (—r,r — 1), in which case it is of homological type, or (r,1 —r), in which case

it is of cohomological type. In addition, we require

ESly = Ker (d, - EPY — EP0) fim (d, - Ere =t o EP)

r+l —

in the case of cohomology, and the corresponding condition with degrees negated for homology.

spectral sequences are imagined as a book with pages indexed by r containing an integer lattice
with E;** at each point of the lattice. We will mostly consider sseq with EZ*? — 0 for p, ¢ < 0.
These are first quadrant spectral sequences. They usually look like:

page 1 page 2
1 o o . . . 1 o . . . .
0 1 2 3 4 0 1 2 3 4

The next question we would like to answer is "How do spectral sequences arise?"

Exact couples are a general source of sseq. An exact couple C = (D, E;1i, j, k) where E, D are
modules, is a diagram:

D i

~

E

D

where ker j = imi, ker = im j, keri = Im k.
d = jk : E — E then d? = 0. Construct C’ = (D’, E’; i, j', k") by
D' =i(D),E' = H.(E;d),i" = |ig, j'[ia]l = [ja],k'[e] = [ke].



C’ is also a derived couple and simlarly we define C". {E", d"} gives terms of spectral sequence.

An unenrolled exact couple is a diagram of abelian groups of the form

. —— D Ly ps s psh

NN

Es+l,~ ES Es—l,~
where each triangle is a rolled up long exact sequence of the form

i
RN DS+1,l+1 N DS,I — ES,[ N DS+1,[ — ...

It can be completely unenrolled to get

— Es,t+1 — As—l,t+1 — Es—l,t+1 — As—Z,t+1 — Es—2,t+1 —

| l

—_— Es+1,t > As,t > Es,t —_— As—l,t E— Es—l,t —

l l

— Esoi-1 —> Asr1p-1 — Egp1p-1 —> A1 ———> Egpo1 ———

We can write D = @D** and E = @E™" to get an exact couple
_">
N

Filtered chain complexes give rise to exact couples and hence spectral seqeunces.

D

Dm<<— O

Let A = Z graded complex of modules. Suppose we have an increasing filtration

- CF, 1As CFyA, C--- C A,

_ 0 — [ EpA )
Let Assoc(A) = E) ,(A) = (F,,_IA .

Suppose d is a differential and filtration on A respects the differential then
F,H.(A) = Im(H,(F,A) = H.(A))
So EYH,(A) is also defined. We have short exact sequence of chain complexes
0— Fp_i > F,A > E) (A) >0
indcuing a long exact seugence
< Hy(Fpo1A)) > Hy(FpAs) = Hy(EQA) — Hyo((FpoiA) — -
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Here we have D%, | = Hp.q(FyA) and E, = Hpig(ED(A))
Convergence

We know a filtration F* of H* can be collapsed into associated graded vector space, defined by
Eé’ (H*) = FPH*/FP*'H*. In the case of a locally finite graded vector space (i.e., H" is finite
dimensional for each n ), H* can be recovered up to isomorphism from the associated graded
vector space by taking direct sums, i.e.,

H* = @ E! (H")
p=0
For an arbitrary graded module H* this might be isomorphic up to an extension.

Because H* may not be easily computed, we can take as a first approximation to H* the
associated graded vector space to some filtration of H*. This is the target of a spectral sequence.

If the terms E," stabilize, i.e. for large r, E, = E,41 = --- then we denote the common value
by E.

A spectral sequence {E,, d, } is said to converge to a graded module G* if there exists a filtration

F on G* such that
EP - ( F,G )
Fp-1GJ

We denote this by

EX = G.

Most common results look like this:

Theorem. There exists a spectral sequence {E*, d,} with
ES" =~ “something computable”

and converging to H*- something computable.

We consider the fibration F — X — B. We know that fibers over a path component are
homotopy equivalent and we have the following action on fiber

Ly : Fyo) = Fyq)

forapathy : I — B. The map y + L, induces an action of 71 (B) on H.(F). We are interested
in trivial action, so L, = id Vy.

Theorem 1 (Serre spectral sequence). Let F — X — B be a fibration with B path connected.
If m1(B) acts trivially on H.(F) then there exists a spectral sequence {E}, ., d,} with
E} o = Hp(B;Hy(F))

and converging to H.(X), i.e.

for a filtration 0 ¢ F? c --- c F' = H,(X).



Example 2. [Homology of K(Z,2)] Consider the pathspace fibration F — P — B when
B =K (Z,2). P is contractible so F' = K(Z, 1).

Z i=0,1
0 otherwise

H;(F;Z) :{

So we have

72 0 q>2
P4 \Hy,(B) ¢q=1,2

1 | Z«__ Hi(B), H»(B) H3(B)

0 | Z Hi(B) Hx(B) Hs(B)

0 1 2 3 4

d®,d*areall0. SOE*=--- = E®. P~ %xs0 E® page has one Z at (0,0). Hence d?* must be
isomorphism except d : ESO — 0.

This gives us H;(B) = 0 and H,(B) =~ Z.
There is an analogous Serre spectral sequence in cohomology.

Theorem 3. For a fibration F — X — B with B path connected and nty(B) acting trivially on
H*(B) there exists a spectral sequence

Ey? ~ H"(B; H'(F))

converging to H*(X), i.e.

n
pn-p P
EZ, =

p+l
Jor a filtration 0 C Fy C --- C Fj = H"(X).
The Serre spectral sequence admits a bilinear product
EP? x ST — EPTSOT gy (1)
satisfying
* Each d, is a derivation satisfying
d(xy) = (dx)y + (=1)""xdy
So the product in eq. (I)) induces a product E, X E,y1 — E,41.

« Theproduct E;/XEy" — EJ™* is (—1)4* times the standard cup product H” (B; HY(F))X
H’(B;H'(F)) — HP*(B; H1"(F))

* The cup productin H* (X) restricts to maps F' X ! — F}\". These induce quotient maps

F [ F) o X FYFY — FEF)EL that coincide with the products EL"P X EST —

+s,m+n—p—s
E? p=s,



Example 4. We would like to compute H*(QS"; Q). We will do a simpler case of n = 3, the
generalization follows as a simple case-work for odd and even cases.

We have the fibration QS — PS? — §° that satisfies the hypothesis of Serre spectral seqeunce.

Q p+g=1

E2, = HP (S HI(QS%; Q) = H""(PS%Q) = -
, 0 otherwise

E2 page: H*(S% Q) = 22 where |x| = 3 and H(QS%; Q) = Q.

E>Y has tobe 0. So E;,o has to vanish. This means there exists a non zero differential map in or
out of ES’O. This gives the only possibility d : E;’l — E;”O, but EM' = 0. d, for r > 4 comes
from 4 quadratn and are 0. So dj : Eg’z — Eg’o 1s non-zero and is an isomorphism. So there
exists y € Eg,z such that d3y = x ( There can’t be more than one generator at E%?)

EY? = H*(QS% Q) = Q[y]. This implies 5 = H*(5* Q) ~ Q

So we have

2 |y Q
1

d;
0| 1 X

Eg’l = 0 because there are no differential that hit something non-zero or map from something
non-zero to it. SO Eg’l =0.

Multiplicative structure tells us that E;’z =y-X.
Q[yx] cannot remain till £ page. So
4
ds : Eg’ — Q[yx]

is non-trivial and an isomorphism. d3y = x, d3y> = 2xy so the above map is multiplication by
2.
Ey* =Qly’]
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For y2x to vansih, it is killed by y* € Eg’o and d3 = u(3).

. even
H'(Q5% Q) = {E)Q odd
4 | y? y2x
3 0 \ 0
2 y yx
1 0\0
0 1 X

0 1 2 3

4 | ¥2 yax
3 O\ 0
2 |'n yix
1 0\0
0 1 X

0 1 2 3

where the following relations hold true: y% = c1y; for some c| € Z.
d3(y2) = yix and d3(y?) = 2y x. This implies y? = 2y», since d3 is an isomorphism. Similarly
y| =nly,. We get H *(QS3; Q) to be a divided power algebra.



