
Spectral sequences

Naren

Our basic goal: Calculate 𝐻∗ where this is usually a graded 𝑅- module or 𝑘-algebra. We will
mainly look at it in the topological setting. So 𝐻∗ for us would be homology or cohomology
rings.
Long exact sequence coming from short exact sequence of (co)chain copmolexes in homology
is a fundamental tool for computing (co)homology. One can consider filtered chain complexes
coming from a filtration of a topological space. There is a generalization of a long exact
sequence called spectral sequence that is a powerful tool for computing homology of a chain
complex. We begin with looking at the basic definitions.

Defintion. A spectral sequence is the data of

• a sequence of bigraded objects
{
𝐸
𝑠,𝑡
𝑟

}
with 𝑟 ∈ N

• differentials 𝑑𝑟 : 𝐸𝑟 → 𝐸𝑟 that satisfy 𝑑2
𝑟 = 0

and of bidegree (−𝑟, 𝑟 − 1), in which case it is of homological type, or (𝑟, 1 − 𝑟), in which case
it is of cohomological type. In addition, we require

𝐸
𝑠,𝑡

𝑟+1 � ker
(
𝑑𝑟 : 𝐸 𝑝,𝑞𝑟 → 𝐸

𝑝+𝑟,𝑞−𝑟+1
𝑟

)
/im

(
𝑑𝑟 : 𝐸 𝑝−𝑟,𝑞+𝑟−1 → 𝐸

𝑝,𝑞
𝑟

)
in the case of cohomology, and the corresponding condition with degrees negated for homology.

spectral sequences are imagined as a book with pages indexed by 𝑟 containing an integer lattice
with 𝐸∗,∗

𝑟 at each point of the lattice. We will mostly consider sseq with 𝐸 𝑝,𝑞𝑟 − 0 for 𝑝, 𝑞 < 0.
These are first quadrant spectral sequences. They usually look like:
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The next question we would like to answer is "How do spectral sequences arise?"

Exact couples are a general source of sseq. An exact couple C = ⟨𝐷, 𝐸 ; 𝑖, 𝑗 , 𝑘⟩ where 𝐸, 𝐷 are
modules, is a diagram:

𝐷 𝐷

𝐸

𝑖

𝑗𝑘

where ker 𝑗 = im 𝑖, ker = im 𝑗 , ker 𝑖 = Im 𝑘 .

𝑑 = 𝑗 𝑘 : 𝐸 → 𝐸 then 𝑑2 = 0. Construct C′ = ⟨𝐷′, 𝐸′; 𝑖′, 𝑗 ′, 𝑘′⟩ by

𝐷′ = 𝑖(𝐷), 𝐸′ = 𝐻∗(𝐸 ; 𝑑), 𝑖′ = |𝑖𝐴′ , 𝑗 ′[𝑖𝑎] = [ 𝑗𝑎], 𝑘′[𝑒] = [𝑘𝑒].
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C′ is also a derived couple and simlarly we define C𝑟 . {𝐸𝑟 , 𝑑𝑟} gives terms of spectral sequence.

An unenrolled exact couple is a diagram of abelian groups of the form

. . . 𝐷𝑠+1,· 𝐷𝑠,· 𝐷𝑠−1,· . . .

𝐸 𝑠+1,· 𝐸 𝑠,· 𝐸 𝑠−1,·

𝑖

𝑗
𝑘

where each triangle is a rolled up long exact sequence of the form

· · · → 𝐷𝑠+1,𝑡+1 𝑖−→ 𝐷𝑠,𝑡 → 𝐸 𝑠,𝑡 → 𝐷𝑠+1,𝑡 → · · ·

It can be completely unenrolled to get

𝐸𝑠,𝑡+1 𝐴𝑠−1,𝑡+1 𝐸𝑠−1,𝑡+1 𝐴𝑠−2,𝑡+1 𝐸𝑠−2,𝑡+1

𝐸𝑠+1,𝑡 𝐴𝑠,𝑡 𝐸𝑠,𝑡 𝐴𝑠−1,𝑡 𝐸𝑠−1,𝑡

𝐸𝑠+2,𝑡−1 𝐴𝑠+1,𝑡−1 𝐸𝑠+1,𝑡−1 𝐴𝑠,𝑡−1 𝐸𝑠,𝑡−1

We can write 𝐷 = ⊕𝐷∗,∗ and 𝐸 = ⊕𝐸∗,∗ to get an exact couple

𝐷 𝐷

𝐸

𝑖

𝑗
𝑘

Filtered chain complexes give rise to exact couples and hence spectral seqeunces.

Let 𝐴 = Z graded complex of modules. Suppose we have an increasing filtration

· · · ⊂ 𝐹𝑝−1𝐴∗ ⊂ 𝐹𝑝𝐴∗ ⊂ · · · ⊂ 𝐴∗

Let Assoc(𝐴) = 𝐸0
𝑝,𝑞 (𝐴) =

(
𝐹𝑝𝐴

𝐹𝑝−1𝐴

)
𝑝+𝑞

Suppose 𝑑 is a differential and filtration on 𝐴 respects the differential then

𝐹𝑝𝐻∗(𝐴) = Im(𝐻∗(𝐹𝑝𝐴)
𝑖∗−→ 𝐻∗(𝐴))

So 𝐸0𝐻∗(𝐴) is also defined. We have short exact sequence of chain complexes

0 → 𝐹𝑝−1 → 𝐹𝑝𝐴→ 𝐸0
𝑝,𝑞 (𝐴) → 0

indcuing a long exact seuqence

· · ·𝐻𝑛 (𝐹𝑝−1𝐴∗) → 𝐻𝑛 (𝐹𝑝𝐴∗) → 𝐻𝑛 (𝐸0
𝑃𝐴) → 𝐻𝑛−1(𝐹𝑝−1𝐴) → · · ·
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Here we have 𝐷∗
𝑝,𝑞 = 𝐻𝑝+𝑞 (𝐹𝑝𝐴) and 𝐸∗

𝑝,𝑞 = 𝐻𝑝+𝑞 (𝐸0
𝑝 (𝐴))

Convergence

We know a filtration 𝐹∗ of 𝐻∗ can be collapsed into associated graded vector space, defined by
𝐸
𝑝

0 (𝐻∗) = 𝐹 𝑝𝐻∗/𝐹 𝑝+1𝐻∗. In the case of a locally finite graded vector space (i.e., 𝐻𝑛 is finite
dimensional for each 𝑛 ), 𝐻∗ can be recovered up to isomorphism from the associated graded
vector space by taking direct sums, i.e.,

𝐻∗ �
∞⊕
𝑝=0

𝐸
𝑝

0 (𝐻∗)

For an arbitrary graded module 𝐻∗ this might be isomorphic up to an extension.

Because 𝐻∗ may not be easily computed, we can take as a first approximation to 𝐻∗ the
associated graded vector space to some filtration of 𝐻∗. This is the target of a spectral sequence.

If the terms 𝐸∗,∗
𝑟 stabilize, i.e. for large 𝑟, 𝐸𝑟 = 𝐸𝑟+1 = · · · then we denote the common value

by 𝐸∞.

A spectral sequence {𝐸𝑟 , 𝑑𝑟} is said to converge to a graded module𝐺∗ if there exists a filtration
𝐹 on 𝐺∗ such that

𝐸
𝑝,𝑞
∞ ≃

(
𝐹𝑝𝐺

𝐹𝑝−1𝐺

)
𝑝+𝑞

We denote this by
𝐸∗,∗
𝑟 =⇒ 𝐺∗

Most common results look like this:

Theorem. There exists a spectral sequence {𝐸∗∗
𝑟 , 𝑑𝑟} with

𝐸∗∗
2 ≃ “𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒”

and converging to 𝐻∗- something computable.

We consider the fibration 𝐹 → 𝑋 → 𝐵. We know that fibers over a path component are
homotopy equivalent and we have the following action on fiber

𝐿𝛾 : 𝐹𝛾(0) → 𝐹𝛾(1)

for a path 𝛾 : 𝐼 → 𝐵. The map 𝛾 ↦→ 𝐿𝛾 induces an action of 𝜋1(𝐵) on 𝐻∗(𝐹). We are interested
in trivial action, so 𝐿𝛾∗ = id∀𝛾.

Theorem 1 (Serre spectral sequence). Let 𝐹 → 𝑋 → 𝐵 be a fibration with 𝐵 path connected.
If 𝜋1(𝐵) acts trivially on 𝐻∗(𝐹) then there exists a spectral sequence {𝐸𝑟𝑝,𝑞, 𝑑𝑟} with

𝐸2
𝑝,𝑞 ≃ 𝐻𝑝 (𝐵;𝐻𝑞 (𝐹))

and converging to 𝐻∗(𝑋), i.e.

𝐸∞
𝑝,𝑛−𝑝 ≃

𝐹
𝑝
𝑛

𝐹
𝑝−1
𝑛

for a filtration 0 ⊂ 𝐹0
𝑛 ⊂ · · · ⊂ 𝐹𝑛𝑛 = 𝐻𝑛 (𝑋).
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Example 2. [Homology of 𝐾 (Z, 2)] Consider the pathspace fibration 𝐹 → 𝑃 → 𝐵 when
𝐵 = 𝐾 (Z, 2). 𝑃 is contractible so 𝐹 = 𝐾 (Z, 1).

𝐻𝑖 (𝐹;Z) =
{
Z 𝑖 = 0, 1
0 otherwise

So we have

𝐸2
𝑝,𝑞 =

{
0 𝑞 > 2
𝐻𝑝 (𝐵) 𝑞 = 1, 2

0 1 2 3 4

0

1

Z

Z

𝐻2(𝐵)𝐻1(𝐵)

𝐻1(𝐵) 𝐻2(𝐵)

𝐻3(𝐵)

𝐻3(𝐵)

· · ·

· · ·

𝑑3, 𝑑4 are all 0. So 𝐸3 = · · · = 𝐸∞. 𝑃 ≃ ★ so 𝐸∞ page has one Z at (0, 0). Hence 𝑑2 must be
isomorphism except 𝑑2 : 𝐸2

0,0 → 0.

This gives us 𝐻1(𝐵) = 0 and 𝐻2(𝐵) ≃ Z.

There is an analogous Serre spectral sequence in cohomology.

Theorem 3. For a fibration 𝐹 → 𝑋 → 𝐵 with 𝐵 path connected and 𝜋1(𝐵) acting trivially on
𝐻∗(𝐵) there exists a spectral sequence

𝐸
𝑝,𝑞

2 ≃ 𝐻𝑝 (𝐵;𝐻𝑞 (𝐹))

converging to 𝐻∗(𝑋), i.e.

𝐸
𝑝,𝑛−𝑝
∞ ≃

𝐹𝑛𝑝

𝐹𝑛
𝑝+1

for a filtration 0 ⊂ 𝐹𝑛𝑛 ⊂ · · · ⊂ 𝐹𝑛0 = 𝐻𝑛 (𝑋).

The Serre spectral sequence admits a bilinear product

𝐸
𝑝,𝑞
𝑟 × 𝐸 𝑠,𝑡𝑟 −→ 𝐸

𝑝+𝑠,𝑞+𝑡
𝑟 ∀𝑟 (1)

satisfying

• Each 𝑑𝑟 is a derivation satisfying

𝑑 (𝑥𝑦) = (𝑑𝑥)𝑦 + (−1)𝑝+𝑞𝑥𝑑𝑦

So the product in eq. (1) induces a product 𝐸𝑟+1 × 𝐸𝑟+1 → 𝐸𝑟+1.

• The product𝐸 𝑝,𝑞2 ×𝐸 𝑠,𝑡2 → 𝐸
𝑝+𝑠,𝑞+𝑡
2 is (−1)𝑞𝑠 times the standard cup product𝐻𝑝 (𝐵;𝐻𝑞 (𝐹))×

𝐻𝑠 (𝐵;𝐻𝑡 (𝐹)) → 𝐻𝑝+𝑠 (𝐵;𝐻𝑞+𝑡 (𝐹))

• The cup product in𝐻∗(𝑋) restricts to maps 𝐹𝑚𝑝 ×𝐹𝑛𝑠 → 𝐹𝑚+𝑛𝑝+𝑠 . These induce quotient maps
𝐹𝑚𝑝 /𝐹𝑚𝑝+1 × 𝐹

𝑛
𝑠 /𝐹𝑛𝑠+1 → 𝐹𝑚+𝑛𝑝+𝑠 /𝐹𝑚+𝑛𝑝+𝑠+1 that coincide with the products 𝐸 𝑝,𝑚−𝑝∞ × 𝐸 𝑠,𝑛−𝑠∞ →

𝐸
𝑝+𝑠,𝑚+𝑛−𝑝−𝑠
∞ .
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Example 4. We would like to compute 𝐻∗(Ω𝑆𝑛;Q). We will do a simpler case of 𝑛 = 3, the
generalization follows as a simple case-work for odd and even cases.

We have the fibration Ω𝑆3 → 𝑃𝑆3 → 𝑆3 that satisfies the hypothesis of Serre spectral seqeunce.

𝐸2
𝑝,𝑞 = 𝐻

𝑝 (𝑆3;𝐻𝑞 (Ω𝑆3;Q)) =⇒ 𝐻𝑝+𝑞 (𝑃𝑆3;Q) =
{
Q 𝑝 + 𝑞 = 1
0 otherwise

𝐸2 page: 𝐻∗(𝑆3;Q) = Q[𝑥]
𝑥2 where |𝑥 | = 3 and 𝐻0(Ω𝑆3;Q) = Q.

0 1 2 3

0

1

2

1 𝑥

𝐸
3,0
∞ has to be 0. So 𝐸3,0

2 has to vanish. This means there exists a non zero differential map in or
out of 𝐸3,0

2 . This gives the only possibility 𝑑2 : 𝐸1,1
2 → 𝐸

3,0
2 , but 𝐸1,1 = 0. 𝑑𝑟 for 𝑟 ≥ 4 comes

from 4th quadratn and are 0. So 𝑑3 : 𝐸0,2
3 → 𝐸

3,0
3 is non-zero and is an isomorphism. So there

exists 𝑦 ∈ 𝐸0,2
2 such that 𝑑3𝑦 = 𝑥 ( There can’t be more than one generator at 𝐸0,2)

𝐸
0,2
2 = 𝐻2(Ω𝑆3;Q) ≃ Q[𝑦]. This implies 𝐸3,2

2 = 𝐻3(𝑆3;Q) ≃ Q

So we have

0 1 2 3

0

1

2

1 𝑥

𝑦 Q

𝑑3𝑑3

𝐸
0,1
2 = 0 because there are no differential that hit something non-zero or map from something

non-zero to it. S0 𝐸0,1
2 = 0.

Multiplicative structure tells us that 𝐸3,2
2 = 𝑦 · 𝑥.

Q[𝑦𝑥] cannot remain till 𝐸∞ page. So

𝑑3 : 𝐸0,4
2 → Q[𝑦𝑥]

is non-trivial and an isomorphism. 𝑑3𝑦 = 𝑥, 𝑑3𝑦
2 = 2𝑥𝑦 so the above map is multiplication by

2.
𝐸

0,4
2 = Q[𝑦2]
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For 𝑦2𝑥 to vansih, it is killed by 𝑦3 ∈ 𝐸0,0
2 and 𝑑3 = 𝜇(3).

𝐻∗(Ω𝑆3;Q) ≃
{
Q even
0 odd

0 1 2 3

0

1

2

3

4

1 𝑥

𝑦 𝑦𝑥

𝑦2 𝑦2𝑥

0

0

0

0

With Z coefficients we have a sequence of generators 𝑦1, 𝑦2, . . .

0 1 2 3

0

1

2

3

4

1 𝑥

𝑦1 𝑦1𝑥

𝑦2 𝑦2𝑥

0

0

0

0

where the following relations hold true: 𝑦2
1 = 𝑐1𝑦2 for some 𝑐1 ∈ Z.

𝑑3(𝑦2) = 𝑦1𝑥 and 𝑑3(𝑦2
1) = 2𝑦1𝑥. This implies 𝑦2

1 = 2𝑦2, since 𝑑3 is an isomorphism. Similarly
𝑦𝑛1 = 𝑛!𝑦𝑛. We get 𝐻∗(Ω𝑆3;Q) to be a divided power algebra.
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